ARTICLE IN PRESS

BBAPAP-39166; No. of pages: 8; 4C: 4, 5, 6

Biochimica et Biophysica Acta xxx (2013) xxx-xxx

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbapap

Spatial structure of the novel light-sensitive photoprotein berovin from

- the ctenophore *Beroe abyssicola* in the Ca²⁺-loaded
- apoprotein conformation state
- Galina A. Stepanyuk ^{a,b,1}, Zhi-Jie Liu ^{a,c,d,1}, Ludmila P. Burakova ^{b,e}, John Lee ^a, John Rose ^a, Eugene S. Vysotski ^{b,e,*}, Bi-Cheng Wang ^a
 - ^a Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
 - ^b Photobiology Laboratory, Institute of Biophysics Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia
 - ^c National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing 100101, China
 - ^d Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
 - e Laboratory of Bioluminescence Biotechnology, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia

ARTICLE INFO

13 Article history:

10 11

12

15

16

17

20

21

44 43

45

46

47

48 49

50

51 52

53

54 55

56

57

14 Received 1 May 2013

Received in revised form 3 July 2013

Accepted 17 July 2013

Available online xxxx

Keywords:

2 Coelenterazine 3 Calcium

23 Calcium 24 Bioluminescence

24 Biolumine 25 Luciferase

ABSTRACT

The bright bioluminescence of ctenophores, found in oceans worldwide, is determined by Ca²⁺-regulated 26 photoproteins, functionally identical to and sharing many properties of hydromedusan photoproteins. 27 In contrast, however, the ctenophore photoproteins are extremely sensitive to UV and visible light over 28 the range of their absorption spectrum. The spatial structure of a novel light-sensitive photoprotein from 29 the ctenophore *Beroe abyssicola* in its apoform bound with three calcium ions is determined at 2.0 Å. 30 We demonstrate that the apoberovin is a slightly asymmetrical compact globular protein formed by two 31 domains with a cavity in the center, which exactly retains the fold architecture characteristic of hydromedusan 32 photoproteins despite their low amino acid sequence identity. However, the structural alignment of these 33 two photoprotein classes clearly shows that despite the high similarity of shape and geometry of their 34 coelenterazine-binding cavities, their interiors differ drastically. The key residues are appearing to be crucial 35 for stabilizing the CBV in berovin by amino acid residues having completely different side chain properties. 36 Evidently, these replacements must be responsible for the distinct properties of ctenophore photoproteins 37 such as sensitivity to light or the fact that the formation of active photoprotein from apophotoprotein, 38 coelenterazine, and oxygen is more effective at alkaline pH.

© 2013 Published by Elsevier B.V. 40

1. Introduction

Bioluminescence is a widely distributed phenomenon among marine dwellers [1,2]. Many of these luminous organisms generate light by oxidation of coelenterazine, an imidazopyrazinone derivative [3,4]. The chemical mechanism of light emission appears to be common among various organisms utilizing coelenterazine but often differs in the detailed biochemical process, probably as necessitated by the behavioral function of bioluminescence [5].

The Ca²⁺-regulated photoproteins constitute a unique class of protein biochemistry. They are responsible for the light emission of a variety of marine coelenterates. The best known and studied of these photoproteins are aequorin from the jellyfish *Aequorea* and obelin from the hydroids *Obelia* — both belonging to the class Hydrozoa.

1570-9639/\$ – see front matter © 2013 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.bbapap.2013.07.006

Ca²⁺-regulated photoproteins are "precharged" bioluminescent pro- 58 teins that are triggered to emit light by binding Ca²⁺ or certain other in- 59 organic ions [6]. The reaction does not require the presence of molecular 60 oxygen or any other cofactor — the photoprotein and the triggering ion 61 are the only components required for light emission. Since the energy 62 emitted as light is derived from the "charged" photoprotein, that mole- 63 cule can react only once, i.e., it does not "turn over" as an enzyme does. 64 In this respect, as well as in the lack of a requirement for molecular ox- 65 ygen or any other cofactor, the reaction is strikingly different from that 66 of classical bioluminescent systems in which an enzyme (luciferase) cat- 67 alyzes the oxidation of a smaller organic substrate molecule (luciferin) 68 with the creation of an excited state and the emission of light. This feature prompted Shimomura and Johnson to coin the term "photoprotein" 70 to describe proteins that contain a reactive organic molecule in its biolu-71 minescent reaction system [7]. Although they described other kinds of 72 photoproteins, the great majority of photoproteins presently known 73 are stimulated to luminescence by calcium ions and the term 74 "Ca²⁺-activated photoproteins" was applied to them by Hastings 75 and Morin [8]. Later the term "Ca²⁺-regulated photoproteins" was 76 suggested to refer to this group, first because these proteins are 77

Please cite this article as: G.A. Stepanyuk, et al., Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca^{2+} -loaded apoprotein conformation state, Biochim. Biophys. Acta (2013), http://dx.doi.org/10.1016/j.bbapap.2013.07.006

^{*} Corresponding author at: Photobiology Laboratory, Institute of Biophysics Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russia. Tel.: $+7\,391\,249\,4430$; fax: $+7\,391\,243\,3400$.

E-mail address: eugene.vysotski@gmail.com (E.S. Vysotski).

¹ These authors contributed equally to this work.

2

78 79

80 81

82

83

84 85

86

87

88

89

90

91

92

93

94 95

96

97

98

99 100

101

102

107

108 109

110

111

112

113

08

115

116

117

118

119

120

121

122

123

 $\frac{128}{129}$

130

131

132

133

134

135

136

137

138

139 140 members of the family of calcium-regulated proteins and second, because calcium regulates the function of these proteins but is not essential for it [9]. Ca²⁺-free photoproteins emit a very low level of light named "Ca²⁺-independent bioluminescence" but the light intensity increases to 1-million fold or even more after the addition of calcium [10].

All hydromedusan Ca²⁺-regulated photoproteins known to date consist of a single polypeptide chain with a molecular mass of ~22 kDa [11], and have a hydrophobic cavity in which a peroxy-substituted coelenterazine, 2-hydroperoxycoelenterazine, is tightly but non-covalently bound. The Ca²⁺ binding to the protein induces oxidative decarboxylation of the 2-hydroperoxycoelenterazine with generation of the protein-bound product, coelenteramide, in its excited state [12,13]. Excited coelenteramide reverts to its ground state with the production of blue light, a broad spectrum with maxima in the range 465–495 nm, depending on the photoprotein type [14]. In the past decade the crystal structures of the photoproteins aequorin [15], obelin [16,17], and clytin [18] as well as their ligand-dependent conformation states [19–21] have been determined. Based on these findings a credible mechanism of hydromedusan photoprotein bioluminescence has been suggested [14,22,23].

Ctenophores (comb jellies) are found in oceans worldwide and nearly all species are luminous [24,25]. The bright bioluminescence of these organisms is also determined by Ca²⁺-regulated photoproteins that are functionally identical to and share many properties of hydromedusan photoproteins [26,27]. Ctenophore photoproteins are also a stable complex of apoprotein and 2-hydroperoxycoelenterazine requiring only Ca²⁺ addition to produce bioluminescence [6]. However, in contrast to hydromedusan photoproteins, the ctenophore photoprotein complex is extremely sensitive to UV and visible light; the bioluminescence capacity deteriorates on exposure to light over its entire absorption spectral range, most likely due to photodestruction of the bound 2-hydroperoxycoelenterazine [28,29].

Recently cDNA genes encoding several ctenophore photoproteins have been cloned. These are berovin from Beroe abyssicola [30], bolinopsin from Bolinopsis infundibulum [31,32], mnemiopsin from Mnemiopsis leidyi [33,34], and the photoprotein from Bathocyroe fosteri [35]. The analysis of amino acid sequences revealed that similar to hydromedusan photoproteins [11], the ctenophore photoproteins also contain three canonical sequence loop regions, each of 12 contiguous residues, which supply the oxygen ligands needed for calcium ion coordination. This property brings ctenophore photoproteins into the family of EF-hand Ca²⁺-binding proteins [36], one of the most numerous and extensively studied protein families. Noteworthy is that although ctenophore photoproteins are functionally identical in many properties to hydromedusan photoproteins, the degree of identity of their amino acid sequences is very low; the highest degree of identity between berovin and hydromedusan photoproteins, for example, is only 29.4% [30]. Thus, these photoproteins might be regarded as a novel type of Ca²⁺-regulated photoprotein distinct from hydromedusan photoproteins.

In this paper we determine the crystal structure at 2.0 Å of the apoberovin from the ctenophore *B. abyssicola* bound with calcium ions. We demonstrate for the first time that the Ca²⁺-regulated photoprotein berovin displays structural features characteristic of the Ca²⁺-binding proteins belonging to the EF-hand family. Despite the low degree of identity between their sequences, berovin retains the same fold architecture as the Ca²⁺-regulated photoproteins of Hydrozoa.

2. Materials and methods

2.1. Site-directed mutagenesis

Site-directed mutagenesis was performed on the template pET22b-BA13 *Escherichia coli* expression plasmid carrying the wild-type berovin

gene [30]. Mutations resulting in the desired amino acid changes 141 were carried out using the QuikChange site-directed mutagenesis 142 kit (Stratagene, La Jolla, CA, USA) according to the protocol supplied 143 with the kit. Mutations W192F and Y204F were introduced with the 144 following primers, respectively:

For1 5'-CATCTCTTTAGAAAGTTTTCATGGAGCCTTACGAT-3'
 Rev1 5'-ATCGTAAGGCTCCATGAAAAACTTTCTAAAGAGATG-3'
 For2 5'-ACAGTGGGACGGAGTCTTCGCTTATAAGTA-3'
 Rev2 5'-TACTTATAAGCGAAGACTCCGTCCCACTGT-3'.

The substitutions introducing the mutations are in bold, underlined. 150 The presence of the mutations was verified by DNA sequencing.

152

185

2.2. Protein production and purification

The E. coli strain B834 (DE3) cells (Novagen) were transformed with 153 plasmid pET22b-BA13 containing the gene encoding apoberovin from 154 B. abyssicola (GenBank: IN673815) [30] without any purification tags. 155 To produce apoberovin labeled by Se-Met, the transformed E. coli cells 156 were cultivated with vigorous shaking in minimal PASM-5052 auto- 157 inducing media [37] during 16 h at 37 °C. Most of the apoprotein accu- 158 mulated in inclusion bodies that can be easily isolated by centrifugation. 159 The apoberovin was purified as previously reported for recombinant 160 obelin [38,39] with little modification. After chromatography on DEAE 161 Sepharose Fast Flow in 6 M urea, the protein sample was diluted 10- 162 fold by 1 mM CaCl₂, 20 mM Tris-HCl pH 7.1 for refolding and loaded Q9 on a DEAE-10 column (Bio-Rad) for additional purification. The protein 164 was eluted with a linear gradient (0-0.5 M) of NaCl, the main peak was 165 collected, and then protein was concentrated on Amicon centrifugal fil- 166 ters (Millipore) with a buffer change for 1 mM calcium acetate, 10 mM 167 Bis-Tris-propane pH 6.5.

The wild type berovin and its mutants for bioluminescence measurements were produced in *E. coli* strain BL21(DE3)-CodonPlus-RIPL 170
(Stratagene) harboring corresponding plasmids and purified as previously described [30]. The wild type apoberovin and its mutants were 172
charged with coelenterazine in 0.5 M NaCl, 5 mm EDTA, 50 mm BisTris-propane pH 9.0 by incubating overnight at 4 °C. Ion-exchange 174
chromatography on a Mono Q column (GE Healthcare) was used to 175
separate the berovin from its apoprotein. Before loading on the 176
Mono Q column, the protein samples were diluted 20-fold with a 177
buffer 5 mm EDTA, Tris-HCl pH 7.2. All manipulations with the 178
charged wild type berovin and its mutants including bioluminesrence and spectral measurements were performed under dim red 180
light to avoid photoinactivation of its bioluminescence property. 181
Coelenterazine was obtained from Prolume Ltd. (Pinetop, USA).

Protein concentration was determined with the D_c Bio-Rad protein 183 assay kit. 184

2.3. Bioluminescent assay and spectral measurements

The specific bioluminescent activities of wild type berovin and its 186 mutants were measured by integrating the light signal over 10 s. 187 Bioluminescence was initiated by rapid injection of $10~\mu L$ photoprotein 188 solution at concentration of 40~nM, into a luminometer cell containing $189~\mu L$ of 2~mm CaCl $_2$ in 50~mm Bis-Tris-propane–HCl pH 8.5 at room 190~tmm temperature. Only freshly purified proteins were used for measurements. 191~tmm

Bioluminescence spectra were measured with a Varian Cary Eclipse 192 spectrofluorimeter (Agilent Technologies) in 50 mM Bis-Tris-propane 193 pH 7.0 (scanning speed 200 nm/s, slit 5 nm). Bioluminescence was initiated by adding the CaCl $_2$ solution in the same buffer. Emission spectral were corrected using the computer program supplied with the instrument. The concentration of free calcium was \sim 0.5 μ M to provide an approximately constant light level during the spectral scan. If any 198 substantial change of bioluminescence intensity took place during the spectral scan, the data points were corrected for this.

Download English Version:

https://daneshyari.com/en/article/10537244

Download Persian Version:

https://daneshyari.com/article/10537244

<u>Daneshyari.com</u>