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a b s t r a c t

Most natural resource management and conservation problems are plagued with high levels of un-
certainties, which make good decision making difficult. Although some kinds of uncertainties are easily
incorporated into decision making, two types of uncertainty present more formidable difficulties. The
first, structural uncertainty, represents our imperfect knowledge about how a managed system behaves.
The second, observational uncertainty, arises because the state of the system must be inferred from
imperfect monitoring systems. The former type of uncertainty has been addressed in ecology using
Adaptive Management (AM) and the latter using the Partially Observable Markov Decision Processes
(POMDP) framework. Here we present a unifying framework that extends standard POMDPs and en-
compasses both standard POMDPs and AM. The approach allows any system variable to be observed or
not observed and uses any relevant observed variable to update beliefs about unknown variables and
parameters. This extends standard AM, which only uses realizations of the state variable to update beliefs
and extends standard POMDP by allowing more general stochastic dependence among the observable
variables and the state variables. This framework enables both structural and observational uncertainty
to be simultaneously modeled. We illustrate the features of the extended POMDP framework with an
example.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There is growing interest in the world of natural resource and
conservation management in making dynamic decisions that are
optimal with respect to the current state of knowledge and
specified performance objectives (e.g., meet a target of level of
biodiversity at the lowest cost possible). Although several ap-
proaches exist for obtaining optimal solutions for dynamic de-
cision problems, perhaps the most common approach uses
Markov Decision Process (MDP) framework (Puterman, 2005;
Marescot et al., 2013). Recent examples in the ecological litera-
ture include confronting climate change (Conroy et al., 2011;
Martin et al., 2011a), controlling invasive species (Regan et al.,
2006, 2011), monitoring/managing rare or threatened species
(Chadès et al., 2008, 2011; McDonald-Madden et al., 2010),
managing disease outbreaks (Chadès et al., 2011), determining

optimal harvest rates (Johnson et al., 1997; Moore et al., 2008;
Williams, 1996; Williams et al., 1996), efficiently allocating con-
servation resources (McCarthy et al., 2010; McDonald-Madden
et al., 2011), and balancing human-wildlife conflicts (Martin
et al., 2011b).

An important feature of the MDP framework is the ability to
account for several sources of uncertainty that directly influence
system dynamics. Williams (2011a) suggests a classification for
uncertainties that commonly arise in natural resource conser-
vation and management. These include (1) environmental vari-
ation, due to the natural randomness of environmental
conditions, (2) partial controllability, which arises due to the
inability of managers to perfectly predict the results of their
actions, (3) structural uncertainty, due to imperfect knowledge of
how a system works and (4) observational uncertainty, which
arises because the state of a system must be inferred from
imperfect monitoring systems. The first two types of uncertainty
(environmental and partial controllability) can be handled in the
standard MDP framework whereas the latter two types of un-
certainty (structural and observational) require modifying the
standard approach by replacing unobserved variables or param-
eters with probability distributions.
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Structural uncertainty arises when the system describing
either state variables dynamics or performance variables (vari-
ables directly affecting utility) is not well understood. This un-
certainty can be described in terms of a discrete set of uncertain
parameters (often referred to as model uncertainty) or in terms
of one or more uncertain continuous parameters (often referred
to as parametric uncertainty). In ecological applications,
addressing structural uncertainty is known as adaptive man-
agement (Holling, 1978; Walters, 1986; Williams, 2011a), wherein
management decisions are made at the same time that system
information is accruing, a kind of “learning while doing.” In this
framework newly collected information helps to resolve struc-
tural uncertainty, resulting in new estimates of unknown pa-
rameters. Management decisions may be taken that reflect an
anticipation of this learning. It is therefore possible that some
actions that lead to faster learning may be optimal even though
these actions would be sub-optimal if the system structure were
known with certainty.1

Structural uncertainty can be addressed by augmenting a
model with a set of additional state variables that define a
probability distribution over the unknown features of that
structure. As new information becomes available these belief
distributions are updated using Bayes Rule. When the uncer-
tainty is characterized by a discrete set of possible values (i.e.
model uncertainty) this distribution can be represented by a
discrete set of probability weights. When uncertain parameters
are continuous, a density function can be defined for each un-
certain parameter. In some cases these distributions and the
system model form conjugate pairs (so the updated belief dis-
tribution has the same functional form as the prior). An example
in the ecological literature is the Beta/Binomial model used in
Hauser and Possingham (2008). More generally, projection
methods can be used wherein the updated (posterior) distribu-
tion is projected onto a parametric family of belief distributions.
The projection approach is described in detail in Zhou et al.
(2010) and is applied to a resource management problem by
Springborn and Sanchirico (2013). In the current paper we
concentrate on the discrete parameter case, which is sufficient to
illustrate the principles involved.

In contrast to structural uncertainty, observational uncertainty
arises when state variables cannot be directly observed and de-
cisions must be made on the basis of observed variables that do
not fully describe the system dynamics. This situation arises quite
commonly in resource management. For example many rare,
threatened or cryptic species are very difficult to observe and even
populations of commercially harvested species, especially marine
species, are only known imperfectly. Additionally, much of our
information on system states comes through empirical data and
inferential models subject to many sources of bias (Williams et al.,
2002). To address imperfect observation data in the context of
decision making, conservation scientists have relied on Partially
Observable Markov Decision Processes (POMDP) (Monahan,
1982). As with adaptive management, the POMDP approach re-
places the unobserved state variable with a probability distribu-
tion and actions are taken based on the current value of that
distribution.

Lane (1989) was the first to apply the POMDP approach to a
resource management problem in an application to salmon fishing
decisions when the stock of salmon is not directly observed. Most of
the studies using the POMDP approach in the resource manage-
ment area have examined issues relating to monitoring, including
applications to the monitoring of conservation contracts (Crowe
and White, 2007; White, 2005), monitoring and control of inva-
sive species (Haight and Polasky, 2010; Regan et al., 2006, 2011),
monitoring habitat quality (Tomberlin and Ish, 2007) and moni-
toring for the presence of endangered species (Chadès et al., 2008;
Tomberlin, 2010).

Recently a few studies have explored linkages between POMDPs
and structural uncertainty. Williams (2011a) describes the con-
ceptual issues and argues that the computational techniques for
solving POMDPs might be fruitfully applied to problems involving
structural uncertainty. McDonald-Madden et al. (2010) solves an
adaptive management problem in which the goal was to identify
the unknown correct model out of three possible models. The true
model is viewed as an unobservable state which is replaced by a set
of belief weights. Although the explicit link to POMDPs is not made
inMcDonald-Madden et al. (2010), this model can be solved using a
standard POMDP approach. The linkages between structural un-
certainty and POMDPs have also been a topic that several authors
have addressed outside of the ecological or environmental litera-
ture. Ko et al. (2010) discuss adaptive learning, which they refer to
as parameter elicitation, where in addition to the traditional partial
observability (handled via POMDP), there is an active effort to
gather information about parameter values that describe the
physical system (i.e., to resolve structural uncertainty). Chadès et al.
(2012) has taken the furthest step in this direction by describing a
framework using Mixed Observability MDPs (MOMDPs), in which
some state variables are directly observed and some are not, and
showing how it can be used to solve standard AM problems. Chadès
et al. (2012) also suggest that this framework (via MOMDPs) could
be used to address partial observability (referred to as detection
probability) and structural uncertainty simultaneously, but do not
explicitly do so.

Addressing structural and observational uncertainty has been
hampered by a lack of flexibility in existing approaches. In stan-
dard AM applications beliefs are updated using only the new ob-
servations of the state variables. In POMDP applications the
observational variables are taken to be pure monitoring variables
that have no influence on the system; such pure monitoring var-
iables would not need to be considered if observational uncer-
tainty was not present. Furthermore, until the development of the
MOMDP framework, POMDP approaches assumed that all state
variables are unobserved. In this paper we aim to build a synthesis
by suggesting a more general framework that extends POMDPs
and encompasses both standard POMDP and adaptive manage-
ment. By allowing for mixed observability, in which some state
variables are observed and some are not, those aspects of a model
in which uncertainty plays the largest role can be targeted. By
allowing for non-state system variables to be observed, learning is
not limited simply to monitoring signals about the state variable,
thereby leading to possible increases in the speed and value of
learning. In addition the approach allows for both structural un-
certainty and partial observability to be handled in a common
framework in which both could play a role simultaneously. The
software for solving models using the extended POMDP approach
will be incorporated into the next release of the MDPSolve pro-
gram (Fackler, 2011), a MATLAB based program available at https://
sites.google.com/site/mdpsolve/.

In the remainder of the paper we provide an overview of MDPs,
AM, and POMDPs, then describe our extension of POMDPs, and
provide a simple example which incorporates both structural and

1 Discussions of adaptive management often distinguish between “passive” and
“active” adaptive management (Williams, 2011b). With passive adaptive manage-
ment structural uncertainty in making current decisions is ignored but probability
models are updated as new information becomes available before future decisions
are taken. This approach does not require any modifications to standard dynamic
programming algorithms. Here we focus on active adaptive management where
actions may be taken in order to learn about the system if that learning is expected
to improve future management decisions.

P. Fackler, K. Pacifici / Journal of Environmental Management 133 (2014) 27e3628

https://sites.google.com/site/mdpsolve/
https://sites.google.com/site/mdpsolve/


Download English Version:

https://daneshyari.com/en/article/1055821

Download Persian Version:

https://daneshyari.com/article/1055821

Daneshyari.com

https://daneshyari.com/en/article/1055821
https://daneshyari.com/article/1055821
https://daneshyari.com

