
Consequences to flood management of using different probability distributions
to estimate extreme rainfall

Luciana S. Esteves*

Cities Institute, London Metropolitan Business School, London Metropolitan University, Stapleton House, 277-281 Holloway Road, London N7 8HN, UK

a r t i c l e i n f o

Article history:
Received 26 September 2011
Received in revised form
19 October 2012
Accepted 5 November 2012
Available online 12 December 2012

Keywords:
Extreme rainfall
Probability distribution
Return period
Flood defence
Risk management

a b s t r a c t

The design of flood defences, such as pumping stations, takes into consideration the predicted return
periods of extreme precipitation depths. Most commonly these are estimated by fitting the Generalised
Extreme Value (GEV) or the Generalised Pareto (GP) probability distributions to the annual maxima
series or to the partial duration series. In this paper, annual maxima series of precipitation depths ob-
tained from daily rainfall data measured at three selected stations in southeast UK are analysed using
a range of probability distributions. These analyses demonstrate that GEV or GP distributions do not
always provide the best fit to the data, and that extreme rainfall estimates for long return periods (e.g. 1
in 100 years) can differ by more than 40% depending on the distribution model used. Since a large
number of properties in the UK and elsewhere currently benefit from flood defences designed using the
GEV or GP probability distributions, the results from this study question whether the level of protection
they offer are appropriate in locations where data demonstrate clearly that alternative probability
distributions may have a better fit to the local rainfall data. This work: (a) raises awareness of the
limitations of common practices in extreme rainfall analysis; (b) suggests a simple way forward to
incorporate uncertainties that is easily applicable to local rainfall data worldwide; and thus (c)
contributes to improve flood risk management.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Flooding is the most frequent and damaging natural hazard
worldwide, which affected 178 million people and caused losses
that exceeded US$ 40 billion (about £25.32 billion) in 2010 (Jha
et al., 2012). The mortality risk associated with major floods and
storms has declined globally in the last two decades; however, the
exposure of people and economic assets to natural hazards is
rapidly increasing, especially in developed countries (UNISDR,
2011). In the UK, for example, about 2.05 million properties were
estimated to be at risk from flooding in 2004 (Evans et al., 2004).
More recently the Environment Agency (EA, 2009) estimated that
5.2 million properties were at risk from flooding in England alone.
Of these, 3.8 million properties are at risk from flooding from
surface runoff (EA, 2011). Despite differences in the methodology
used in the two assessments, it is clear that flood risk in England
(and worldwide) is becoming a much larger threat than previously
anticipated. Climate change and poor urban planning are likely to

increase flood risk in the future; the first by affecting local rainfall
patterns and enhancing storminess; and the latter for placing
people and critical infrastructure in flood-prone areas. Despite the
implementation of policies regulating occupation of flood risk
areas, planning systems often favour development needs above the
need to reduce flood risk (e.g. White and Howe, 2002; Wheater and
Evans, 2009; Jha et al., 2012). In the last two years, extreme rainfall
caused devastating floods in developing and developed countries
across all continents (e.g. Australia, Pakistan, Philippines, Thailand,
South Africa, Brazil, France, the UK and the USA).

Uncertainties are inherent in the prediction of the frequency and
extent of all types of flood. However, flooding from some sources
can be better predicted than others. Coastal flooding is a serious
threat at many locations, and a network of flood defences is usually
in place to provide protection from water levels of specific return
periods. The cyclic nature of tides facilitates the prediction of
extreme water levels, which occur when storm surges coincide
with high spring tides. Despite some uncertainties related to the
prediction of storm surges, extreme water levels can be modelled
with reasonable results (e.g. Pugh,1996; Flather et al.,1998; Verlaan
et al., 2005; Brown et al., 2010). Additional uncertainties arise when
the impacts of climate change are included in the predictions of
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return periods of extreme sea levels (e.g. Lowe and Gregory, 2005;
Wang et al., 2008).

Flooding caused by other processes is more difficult to predict
(and mitigate) due to the number of influencing variables and their
complex relationships. For example, extreme rainfall can lead to
flooding from overwhelmed rivers and sewers. This is very difficult
to predict (Wheater and Evans, 2009), especially at meaningful
time-scales for adequate response. Further complexity is added by
urbanisation, particularly by the increase in impervious surfaces
and obsolete combined sewer/stormwater drain systems (Thurston
et al., 2010). Many locations have systems of pumps and water
storage to prevent floods from surface runoff and/or overwhelmed
drains (Wheater and Evans, 2009). However, the efficiency of these
systems depends on their (flow/volume) capacity, which is
designed to deal with rainfall of specific return period (e.g. 1 in
100 years). To provide the desired level of protection, it is imper-
ative that the precipitation depths used to design flood defences are
estimated taking into consideration uncertainties related to the
method and to the potential changes in rainfall patterns and trends
caused by climate change.

At many locations worldwide, flood defences at the coast and in
urban areas are in urgent need of upgrading to copewith the effects
of urban development and predicted impacts of climate change
(e.g. higher sea levels and more frequent and intense extreme
rainfall). Return periods of extreme rainfall are usually estimated by
fitting a probability distribution (PD) to annual maxima series (i.e.
datasets comprised by the highest rainfall depth in each year) or
partial duration series (i.e. datasets formed by rainfall depths
exceeding a selected threshold) (e.g. Cunnane, 1973; Rosbjerg,
1977; Davidson and Smith, 1990; Adamowski, 2000). The most
common PD used in the analysis of extreme rainfall are the
Generalised Extreme Value (GEV) or the Generalised Pareto (e.g.
Davidson and Smith, 1990; Coles, 2001; Bodini and Cossu, 2010;
Toretti et al., 2010). However, other PDs might show a better fit to
some datasets and the difference in the precipitation depths for the
resulting return periods can be significant. Adequate selection of
the PD is one of the “more important issues in flood frequency
analysis” (Adamowski, 2000, p. 220).

This article draws attention to the limitations of the common
approach used in extreme rainfall analyses and discusses the
potential consequences for the design of flood defences and the
level of protection they offer. The influence of using different PDs in
estimating extreme rainfall is demonstrated using, as examples,
three selected locations in southeast England. A simple way
forward to incorporate uncertainties in the estimates of rainfall
depths of return periods relevant to flood risk management is then
suggested. The findings of this study will assist local authorities
responsible for flood management in improving decision-making
concerning mitigation of flood risk.

2. Methods

Time-series of daily rainfall measurements were obtained from
the Met Office MIDAS Land Surface Stations.1 The data analysis was
conducted as part of the EU-funded project Solutions for Environ-
mental Contrasts in Coastal Areas (SECOA). The stations analysed
here were selected to assess the magnitude and frequency of
extreme rainfall in Portsmouth and the Thames Gateway, the
project’s study areas in the UK. For the area of Portsmouth, the
Southsea station was selected due to the length of the daily rainfall
record. Two locations were selected in the Thames Gateway:
Southend in the eastern sector of the study area and Deptford in the
western sector. Table 1 shows the characteristics of the datasets
used here in the analysis of extreme rainfall. Data from two closely
located stations were used to extend the time-series at Southend.

Annual maxima series (AMS) for 1-day, 2-day and 3-day dura-
tions were produced from the daily rainfall time-series at the three
locations. Maxima series for winter (WMS) and summer (SMS)
precipitation were also produced for 1-day, 2-day and 3-day
durations. The WMS were based on records from December,
January and February months and the SMS were based on data
recorded in June, July and August. The precipitation depths for
selected return periods were estimated by fitting PDs to the AMS,
WMS and SMS datasets for the three durations. Six PDs were
tested: Generalised Extreme Value (GEV), lognormal (LN), Gumbell
Maximum (EV1), Log-Pearson III (LP3), Weibull and Burr. Descrip-
tion of these distributions can be found on a wide range of publi-
cations on statistical distributions (e.g. Johnson et al., 1994; Forbes
et al., 2011) or in focused articles (e.g. Burr, 1942; Tadikamalla,
1980). The goodness-of-fit was measured using the Kolmogorove
Smirnov (KeS) and the AndersoneDarling (AeD) tests. Addition-
ally, the software EasyFit2 was used to find the best-fit distribution
to the datasets. Precipitation depths for selected return periods
were then estimated based on the best-fit probability distributions.

2.1. KolmogoroveSmirnov test (KeS)

This test is used to decide if a sample comes from a population
with a specific distribution (NIST/SEMATECH, 2010). For a detailed
description of the test see Chakravarti et al. (1967). It is based on the
empirical cumulative distribution function denoted by

FnðxÞ ¼ 1
n
½Number of observations � x� (1)

Table 1
Summary of the Met Office MIDAS datasets of daily rainfall used in this study.

Station name (code) Coordinatesa (m) Period n Observations

Southsea
(src_id 861)

463,700; 99,100
(Hampshire)

01/01/1916 to 30/06/1997 29,299 days
966 months
81 years

Elevation: 2 m
Drainage: coastal

Southend
(src_id 492)
Southend
Southchurch Park
(src_id 496)

587,600; 185,200;

589,986; 184,998
(Essex)

24/01/1961 to 01/01/1971

01/01/1971 to 01/10/2010
(major data gaps 01/1977e
02/1986, 09/2005e08/2008)

12,721 days
419 months
39 years

Elevation: 27 m

Elevation: 4 m
Drainage: coastal

Deptford P Sta
(src_id 6704)

537,600; 177,000
(Greater London)

24/01/1961 to 31/12/2010
(data gap 02/1999e02/2000)

11,969 days
580 months
49 years

Elevation: 5 m
Drainage:
Ravensbourne

a Coordinates are provided in the British National Grid system.

1 http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_ukmo-midas.
2 http://www.mathwave.com/products/easyfit.html.
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