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Infrared (IR) spectroscopic techniques combined with multivariate calibration (MVC) methods are promising for on-line moni-

toring. In a previous article [M. Zeaiter, M. Roger, V. Belon-Maurel, D. Rutledge, Trends Anal. Chem. 23 (2004) 157], robustness

of the calibration was defined and different ways to evaluate it were identified.

In order to improve the robustness of these calibration methods for industrial applications, an overview is presented of the

existing methods, usually used to enhance prediction-model performance. The first part focuses on geometric spectral

pre-processing methods, such as normalization methods, smoothing and derivatives. The second part discusses dimensionality-

reduction methods, represented by orthogonalization and variable- selection methods. The impact of each method on the

enhancement of the robustness of models developed by MVC is analyzed and discussed.
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Notation: Capital bold characters will be used for matrices (e.g., X); small bold characters for column vectors (e.g., xj will denote the jth column of

X); row vectors will be denoted by the transpose notation (e.g., xTi will denote the ith row of X); non-bold characters will be used for scalars (e.g.,

matrix elements xij). When needed for the purpose of clarity, matrix dimensions are indicated as X(n · p), where n is the number of lines and p the

number of columns

Glossary: LMVC, Linear multivariate calibration; ILS, Inverse least squares; CLS, Classical least squares; PLS, Partial least squares; MLR, Multiple

linear regression; PCR, Principal components regression; X, Matrix of n spectra and p wavenumbers; y, Reference vector of n rows; f, Multivariate

function; e, Vector of error; ŷ, Estimated reference vector of n rows; b, Vector of the p regression coefficients; b0, Intercept ŷ ¼ Xbþ b0; ixi, The
Euclidian norm of x, i.e. ðxTxÞ

1
2; dx, The vector of influence factors effect; dx1, The vector of systematic variations of the influence factors or structured

effect; dx2, The vector of random variations of the influence factors effects or noise effect; PRESS, Predicted residual error sum of squares

PRESS ¼
P

ðŷ� yÞ2; SEV, The standard error of validation SEC2 ¼ 1
n1�1 kŷ� yk2; SEC, The standard error of calibration SEC2 ¼ 1

n�n1�1 kŷ� yk2; SEP,
The standard error of prediction SEP2 ¼ 1

n kŷ� yk2; BS, The prediction bias BS ¼ ðŷ� yÞ; w, The weight vector; T, The scores matrix of X; P, The

loadings matrix of X; ~S, The p-dimensional space of the spectra; ~C, The spectral space of the parameter of interest; ~N, The space of the rest of the

spectral information; X, The spectral matrix of ~S; X+, The spectral matrix of ~C; X�, The matrix in ~N; Z�, The matrix of the a basis of ~N; ~E, The space

of residuals; E, The matrix of residuals in ~E; SNRj, The signal to noise ratio

1. Introduction

In order to promote spectroscopic tech-
niques in real-life industrial applications,
one must ensure the robustness of the
calibration models. In a previous review
article, focusing on the definition of
robustness and the ways of assessing it, we
defined robustness as ‘‘the stability of the
predictive capacity of the calibration
model against perturbations centered on
standard conditions’’ [1]. In this article,
we present different pre-processing
methods used to improve the calibration

model, and discuss their contributions to
the robustness improvement of calibration
models.
In spectroscopy, the goal of calibration

is to replace slow, expensive measurement
of the property of interest, y, by a spectro-
scopic one that is cheaper or faster,
nevertheless still sufficiently accurate [2].
For IR spectroscopy, MVC is defined as
‘‘A process for creating a model, f, that
relates sample properties, y, to the inten-
sities or absorbencies, x, at more than one
wavelength or frequency of a set of known
reference samples’’ [3].
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Theory indicates that a linear form of the function,
f, is to be adopted, since the Lambert–Beer�s law
represents the linear relationship between concentra-
tion and absorbance [4–6], so linear MVC (LMVC)
models are used, such as inverse least squares (ILS),
classical least squares (CLS), multiple linear regression
(MLR), principal component regression (PCR) and
partial least squares regression (PLSR) [7]. This linear
model relating y (n values of the property of inter-
est) to X (n spectra) is presented in the following
equation:

y ¼ b0 þ Xbþ e. ð1Þ

In the following, only linear models are considered.
LMVC aims at estimating b0 and b (i.e. the regression
parameters of the model), and e is the matrix of residuals
supposedly due to random noise of the zero mean [8,9].
The development of the regression model comprises

three stages:
(1) the calibration model is built and validated using

a training set (X0,y0) and a validation set
(X1,y1); the result is an error of validation,
SEV, that is used to set up the model;

(2) both (X0,y0) and (X1,y1) are used to compute the
SEC of the model; and,

(3) an independent test set (X2,y2) is used to eval-
uate the model performance with an indicator
criterion, namely the error of prediction, SEP.

Mostly, the first and second steps are merged together
using the cross-validation technique (e.g., leave one out
(LOO) method, contiguous blocks, randomization
[10,11] or the bootstrap [12]), so the standard error of
calibration (SEC) and the standard error of validation
(SEV) are computed simultaneously.
The robustness problem is due to variations in the

measurement conditions caused by variations in influ-
ence factors that affect the spectral measurement by
adding a perturbation, dx. This perturbation is repre-
sented in the prediction responses of Equation (1) as an
error, dŷ, such that

dŷ ¼ dxTb

which yields

jdŷj ¼ kdxk kbk j cosðdx;bÞj. ð2Þ
To minimize jdŷj, the minimization of one or more of the
three terms of the right-hand part of Equation (2) is
required.
The first part of this article deals with geometric,

spectral data-pre-processing methods. The second part
presents the processing methods used to extract from the
spectral space the subspace that holds the informative
features.
The contribution of these methods to enhancing the

robustness of the calibration model is discussed accord-
ing to Equation (2).

2. Geometric spectral pre-processing methods

Geometric pre-processing methods are widely carried out
to correct spectral data from drift in baseline, non-
linearity, curvilinearity, as well as additive and multi-
plicative effects.
They can be divided into two different categories with

respect to the intended corrections:
(1) one corrects for the shifts and the trends in base-

line and curvilinearity, and for multiplicative
interference, mainly due to scattering; these are
the normalization methods; and,

(2) the smoothing used to reduce noise and differen-
tiation to correct peak overlap and constant or
linear baseline drift.

2.1. Spectral normalization
The normalization pre-processing method consists of
giving the same weight to all absorbencies. Although
spectral normalization methods are applied to each
individual spectrum, only some of them require the
whole data set to compute correction factors. In [4], the
following, different methods used for spectral normali-
zation are presented.

2.1.1. The standard normal variate (SNV) transformation
Light scattering due to the interactions between IR
radiation and sample particles, often creates a shift of
absorbency levels that could be harmful for spectral
interpretation and linear calibration of NIR diffuse
reflectance spectra. It results in path-length variations
that lead to a background signal level that varies with
wavelengths. This background effect, responsible for the
baseline shift and curvature, may vary greatly between
and within samples [13–15].
The SNV transformation was introduced by Barnes

et al. [16,17] to reduce multiplicative effects of scatter-
ing, particle size and multicolinearity changes over all
the NIR spectra. Each spectrum is centered and then
scaled by its standard deviation. Its disadvantage
remains in the assumption that multiplicative effects are
uniform over the whole spectral range, which is not al-
ways fulfilled, so artifacts could be introduced by this
transformation.

2.1.2. Robust normal variate (RNV) transformation
Guo et al. [18] tackled the artifacts created by SNV
transformation by solving the ‘‘Closure’’ problem. Clo-
sure is the statistical term indicating that the sum of the
data is necessarily equal to a certain amount, so that if
one of the variables changes in one direction, the other
variables must change into the opposite direction in
order to compensate for the change and ensure the
constancy of the sum. The variable are ‘‘closed’’ using
SNV because the corrected spectral values are of zero

Trends Trends in Analytical Chemistry, Vol. 24, No. 5, 2005

438 http://www.elsevier.com/locate/trac



Download English Version:

https://daneshyari.com/en/article/10563937

Download Persian Version:

https://daneshyari.com/article/10563937

Daneshyari.com

https://daneshyari.com/en/article/10563937
https://daneshyari.com/article/10563937
https://daneshyari.com

