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a b s t r a c t

Unsteady numerical computations are performed to investigate the flow field, wave propagation and the
structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation
Reynolds-Averaged Navier–Stokes (RANS) model. The distribution of the acoustic pressure is solved
based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single
bubble are considered by applying the Keller–Miksis equation to consider the compressibility of the
liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way
coupling Euler–Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed
phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and
their orders of magnitude are compared. To verify the implemented numerical algorithms, results for
one- and two-dimensional simplified test cases are compared with analytical solutions. The results show
good agreement with experimental results for the relationship between the acoustic pressure amplitude
and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agree-
ment with experimentally observed structure of bubbles close to sonotrode.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Acoustic cavitation concerns the formation of bubbles from nu-
clei, their convection, oscillation and collapse [1]. These bubbles
are responsible for dissipation of the acoustic energy in the liquid
medium. Thus, determining the correct bubble distribution is an
important goal in designing sonochemical reactors. The most
important technological problem is upscaling the laboratory reac-
tors to industrial scales ones in which the uniformity of the cavita-
tional activity cannot be guaranteed. This uniformity, in addition, is
disturbed due to external instruments such as aluminum foils and
hydrophones during experimental investigations [2,3]. Further-
more, the majority of experimental investigations are on the
behavior of a single bubble during a short period of time such as
the work of Lauterborn et al. [4] and Dangla and Poulain [5]. These
experiments are of limited value to understand the state of a bub-
ble swarm which is the most significant factor affecting the cavita-
tional activity. Thus, to understand the design aspects of
sonochemical reactors such as the dependency of the cavitational
activity on the operating parameters and their optimum values
[6], theoretical models as well as experimental investigations
should be utilized [7].

Computational models may help in optimizing the geometry
and operating parameters of a reactor. However, formulating a
comprehensive physical model is still a challenge since not all of
the phenomena are completely understood [8]. Furthermore, the
disparity of the length and time scales causes severe mathematical
problems. A majority of models dealing with bubbles in an acoustic
field focus on a Rayleigh type equation for a single bubble during
one or several acoustic periods [9,10]. As a result the pressure
and temperature at the bubble position during the oscillation
and after its collapse are predictable. These parameters may help
in estimating the optimum design parameters such as cavitational
yield in a reactor [11]. Furthermore, the energy analysis of a single
bubble dynamics could be helpful in determining the dissipation of
power in the whole geometry of the reactor [12,13]. However, pre-
dicting the heat and mass transfer as well as the chemical conse-
quences at a microscopic scale in these models is still of
challenge. Furthermore, the swarm behavior of bubbles cannot
be figured out from single bubble dynamics.

The second group of the models concerns the modeling of the
cavitational activity by finding the acoustic pressure amplitude
as a field quantity. In this category, the acoustic pressure is pre-
dicted without considering the effect of bubbles [14] or by estimat-
ing their effect using simplifications [15,16]. These approaches
allow to determine the effect of parameters such as frequency
and intensity of the ultrasound source or the boundaries, with re-
spect to sound propagation and damping [17].
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Most of the aforementioned references do not concentrate on
the bulk medium motion. This flow field may be a result of external
momentum sources, such as the inlet/outlet of a continuous feed
reactor. Alternatively, they may be due to a strong acoustic source
(acoustic streaming). Previous studies on the fluid motion in pres-
ence of a sound field are limited to investigate the acoustic stream-
ing and are not for a combination with other momentum sources
(see Ref. [18] or Ref. [19] and references therein). Furthermore,
the experimental works in this field are usually conducted by con-
sidering some chemical characteristics such as mixing time of the
reactants in a sonochemical reactor [20]. Since recent sonochemi-
cal reactors may be designed for reacting flows [21], the influence
of external convective sources should also be considered. Besides
that, it is important to understand the mixing and hydrodynamic
characteristics due to the presence of solid/gas phases in a contin-
uous feed reactor [22]. The idea of modeling of such a flow field is
that it can help in placement of the reactants in zones of maximum
cavitational intensity, flow distributors and near transducers for
eliminating zones with weak cavitational activity [23].

Recently, hydrodynamic cavitation phenomena including the
radial dynamics of externally driven bubbles are investigated
by Abdel-Maksoud et al. [24]. However, due to the large differ-
ence between time scales of the oscillations of the bubbles and
the bulk liquid flow, there are no attempts toward simultaneous
modeling of these events using an Euler–Lagrange method in
sonochemical reactors. The works of Parlitz et al. [25] and
Mettin et al. [26] are some of the first attempts to use an
Euler–Lagrange approach for the motion of bubbles under the
action of ultrasound. By applying a particle model, they found
that the primary Bjerknes force creates filaments of bubbles
(streamers) due to the motion of the bubbles towards the nodes
or antinodes of the acoustic field. Nevertheless, these works also
suffer from the lack of investigating the external convective
sources. Therefore, the present paper seeks to find a new method
to investigate the motion of bubbles with varying radii and the
formation of their quasi-steady structure under the action of a
strong acoustic field.

2. Theory

2.1. Field quantities

For small amplitude waves, the distribution of the acoustic
pressure may be described by the linear wave equation. Decom-
posing this equation into a spatially varying amplitude and a har-
monic contribution, results to a Helmholtz type equation

r2pþ k2p ¼ 0: ð1Þ

Here, k = x/c denotes the wave number in which x is the frequency
of the wave, c is the speed of sound in the medium and p is the
acoustic wave amplitude.

The motion of the turbulent, Newtonian, incompressible fluid
may be governed by the RANS models, i.e., the convection equa-
tions for mass and momentum together with a transport model
for the turbulent kinetic energy k and the turbulent dissipation rate
�. Here, the standard k � �model is selected for turbulence model-
ing. Details of the model are not presented here. In the following,
Uf denotes the fluid velocity.

2.2. Lagrangian approach for bubble motion

The motion of each individual bubble in a Lagrangian approach
is governed by Newton’s second law

mb
dUb

dt
¼ FG þ FAM þ Fvol þ FD þ FBj1; ð2Þ

in which mb is the mass of the bubble and Ub is its velocity. The
Right Hand Side (RHS) of Eq. (2) contains the gravitational force

FG ¼ 1� q
qb

� �
mbg, the added mass force FAM ¼ mbq

2qb

DUf
Dt �

dUb
dt

� �
, the

volume variation force Fvol ¼ q
2qb

dmb
dt ðUf � UbÞ which represents

momentum transfer due to changes in the bubble volume [27],
the drag force and the primary Bjerknes force. In these equations,
qb is the density of the bubble that is mainly filled with gas such
as air. The last two forces are explained in the following.

The drag force is a result of the relative motion between the
bubble and the surrounding fluid and can be expressed as

FD ¼ �mb
Ub � Uf

sb
; ð3Þ

where sb is the relaxation time for the bubble. The value of sb,
which represents the time for a bubble to respond to the changes
in the local fluid velocity, can be obtained as

sb ¼
qbd2

b
18l : Reb < 0:1
4
3

qbdb
qCD jUf�Ub j

: Reb > 0:1

8<
:

in which db is the diameter of the spherical bubble, Reb is the bubble
Reynolds number defined based on the relative velocity between
bubble and the surrounding fluid and the drag coefficient, CD, is ob-
tained from the Schiller and Naumann relation [28].

As the acoustic pressure is oscillatory in time, the average of the
primary Bjerknes force on the bubble during one acoustic cycle is
calculated as follows

FBj1 ¼ �hVðtÞrpðtÞit; ð4Þ

where V(t) is the volume of the bubble and rp(t) is the pressure
gradient at the bubble position. The operator h.it denotes averaging
in time.

2.2.1. Updating the bubble position
To find the new position of a bubble as xnþ1

b ¼ xn
b þ Unþ1

b dt, the
updated bubble velocity Unþ1

b is obtained by substituting Eqs. (3)
and (4) and the gravitational, added mass and volume variation
forces into Eq. (2). To calculate drag, added mass and volume var-
iation forces, the updated value for the bubble velocity is applied,
that means a backward (implicit) Euler method is used. After some
algebraic operations, the updated bubble velocity is obtained as
below

Unþ1
b ¼

Un
b þ 2dt

2qbþq ðqb � qÞgþ q
2Vb

dVb
dt þ

qb
s

� �
U@b � 1

Vb
hVbrpðtÞit

� �
1þ 2dt

2qbþq
q

2Vb

dVb
dt þ

qb
s

� � ;

ð5Þ

in which U@b is a new notation for Uf to show the velocity vector of
the liquid at the bubble position. This vector is interpolated from
the solution of the flow field at each time step.

2.3. Bubble dynamics

For the sake of simplicity, it is assumed that the spherical shape
of the bubbles remains unchanged and the radial dynamics of a
bubble including the compressibility effects to the first order of
acoustical Mach number, _R=c, are modeled by the Keller–Miksis
equation (KME) [29]

q 1�
_R
c

 !
R€Rþ 3

2
_R2 1�

_R
3c

 ! !

¼ 1þ
_R
c
þ R

c
d
dt

 !
pg �

2r
R
� 4l _R

R
� p

 !
; ð6Þ
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