Organic Electronics xxx (2013) xxx-xxx

Contents lists available at ScienceDirect

Organic Electronics

journal homepage: www.elsevier.com/locate/orgel

32

35

36 37

38

39

40

41

42

43

44 45

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Effect of a novel self-assembly based on coordination polymer with zinc porphyrin in supramolecular solar cells

7 Q1 Jing Cao a,b,c, Jia-Cheng Liu a,b,c,*, Wen-Ting Deng a,b,c, Ren-Zhi Li d, Neng-Zhi Jin e

- 8 Q2 a Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
 - b Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China ^c Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
 - d State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China ^e Gansu Computing Center, Lanzhou 730030, PR China

10

11

12

13

39 20

21 22

23

27

29

49

48

49

50

51

52

53

55

56

57

25 26

ARTICLE INFO

Article history: Received 5 May 2013

- Received in revised form 27 July 2013
- Accepted 27 July 2013
 - Available online xxxx

Keywords: Self-assembly

Coordination polymer Zinc porphyrin

Solar cell

ABSTRACT

Within this work, we firstly report the self-assemblies of zinc porphyrin coordination polymers (CPs) appended isonicotinic acid ligands by metal-ligand axial coordination approach immobilized on the nanostructured TiO₂ electrode surfaces in photoelectrochemical devices. Compared to the assemblies based on zinc porphyrins integrated isonicotinic acid ligands via metal-ligand axial coordination or metal-ligand edged binding approach, the **CPs**-based assemblies exhibit significantly improved photovoltaic performances. Especially, the assembly based on iminazole-substituted zinc porphyrin coordination polymer exhibits an excellent photovoltaic performance with a short circuit photocurrent density (J_{sc}) of 3.8 mA cm⁻², an open circuit voltage (V_{oc}) of 0.31 V, a fill factor (FF) of 0.67 and an overall conversion efficiency (n) of 0.48% under AM 1.5 conditions. The results serve as another good testing ground for the fabrication of supramolecular devices techniques in future.

© 2013 Published by Elsevier B.V.

1. Introduction

In nature, porphyrin macrocycle as a basic chromophore framework is used to the photoinduced electron and energy transfer system, because it could collect solar energy from the peripheral light-harvesting antenna and validly convert it into chemical energy [1,2]. Inspired by this intriguing natural principle, researchers have been attempting to mimic such feature to construct artificial light-harvesting devices in solar cells [3-9]. In these biomimic processes, many self-assemble frameworks have successfully served as energy/electron/hole-transferral agents to accomplish efficient charge separation and carrier of separated charges to their respective electrodes. For example, to control the distances and orientations of entities, and achieve long-live charge-separated state, employing multiporphyrin-based assemblies such as triads, tetrads or pentads through metal-ligand axial coordination [10,11] and/or metal-ligand edged binding approach [12,13] for constructing ordered array of different moieties on solid surface have been documented. It is presumed that porphyrin-based coordination polymers (CPs)-organic acid self-assemblies via metal-ligand axial interactions with multiple and effective transmission channels for electron and energy transfer could be applied to dye-sensitized photonic devices, and generating significant current-voltage behavior.

Herein, to the best of our knowledge, we firstly report the metal-ligand axial coordination approach to construct the porphyrin-based **CPs**-ionicotinic acid assemblies

E-mail address: jcliuchem@163.com (J.-C. Liu).

1566-1199/\$ - see front matter © 2013 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.orgel.2013.07.033

^{*} Corresponding author at: Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China. Tel.: +86 13919027098.

Scheme 1. Structural diagram of P1-P3 and anchoring molecule.

sensitized on TiO₂ electrode surfaces in photosynthesis devices. Three zinc porphyrin bearing different substitutions (denoted as Px, x = 1-3, shown in Scheme 1) and their corresponding Hg(II) coordination polymers (described as $\mathbf{CPs-x}$, $\mathbf{x} = 1-3$) were synthesized, and $\mathbf{Px-}$ isonicotinic acid assemblies via metal-ligand axial coordination (denoted asPx-a) and edged binding approach (described asPx-Hg-e) were also prepared to further probe the performances of CPs-x-isonicotinic acid assemblies (defined as CPs-x-a). The detailed assembly modes are shown in Scheme 2.

2. Experiments

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

2.1. General methods

Electronic absorption spectra were measured on a UV-2550 spectrometer. Elemental analyses of C, H, and N were recorded on a VxRio EL Instrument. Surface topography of the self-assembly films on TiO2 electrode surface was imaged using an atomic force microscopy (AFM, Nanoscope III, Digital Instruments Co.) in contact tapping mode. Transmission electron microscopy (TEM) (Hitachi Model

H-900) was prepared to characterize the morphology and particle size distribution. A LS1000 solar simula-tor (Solar Light Com. Inc., USA) was used to give an irradiance of 100 mW cm⁻² (the equivalent of one sun at AM 1.5G) at the surface of a testing cell. The current-voltage characteristics were obtained by applying external potential bias to the cell and measuring the dark current and photocurrent with a Keithley model 2602 digital source meter. This process was fully automated using Labview 8.0. A similar data acquisition system was used to control the incident photon-to-collected electron conversion efficiency (IPCE) measurement. Under full computer control, light from a 1000 W xenon lamp was focused through a monochromator onto the photovoltaic cell under test. A computercontrolled monochromator (Omni λ300) was incre-mented through the spectral range (300-900 nm) to generate a photocurrent action spectra with a sampling interval of 10 nm and a current sampling time of 2 s. IPCE is defined by IPCE(λ) = $hcI_{sc}/e\Phi\lambda$, where h is Planck's constant, c is the speed of light in a vacuum, e is the electronic charge, λ is the wavelength (m), J_{sc} is the short-circuit photocurrent density (mA cm⁻²), and Φ is the incident radiative flux (mW m⁻²). Photovoltaic performance was measured by

97

98

99

101

102

103

104

105

106

107

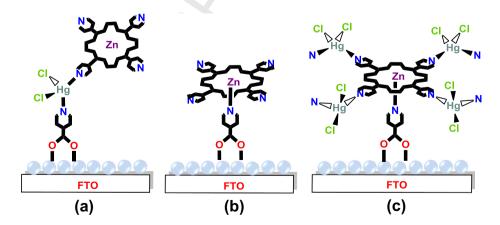
108

109

110

111

112


113

114

115

116

117

Scheme 2. Structures of coordination-bond-assisted self-assemblies on TiO2 electrode surfaces, (a) metal-ligand edged binding approach for P1isonicotinic acid assembly; (b) metal-ligand axial coordination for P1-isonicotinic acid assembly; (c) metal-ligand axial coordination for CPs-1-isonicotinic acid assembly.

Download English Version:

https://daneshyari.com/en/article/10566380

Download Persian Version:

https://daneshyari.com/article/10566380

<u>Daneshyari.com</u>