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29Single-crystalline organic transistors of 3,11-didecyl-dinaphtho[2,3-d:20 ,30-d0]benzo
30[1,2-b:4,5-b0]dithiophene (C10-DNBDT-NW) and 2,9-didecyl-dinaphtho[2,3-b:20,30-f]
31thieno[3,2-b]thiophene (C10-DNTT) were fabricated by solution processes on top of the
32patterned hybrid ultrathin gate dielectrics consisting of 3.6 nm-thick aluminum oxide
33and self-assembled monolayers (SAMs). Due to the excellent crystallinity of the channel
34films, bottom-gate and top-contact field-effect transistors exhibited the average field-
35effect mobility of 3.7 cm2/V s and 4.3 cm2/V s for C10-DNBDT-NW and C10-DNTT, respec-
36tively. These are the first successful devices of solution-processed single-crystalline
37transistors on ultrathin gate dielectrics with the mobility above 1 cm2/V s, opening the
38way to develop low-power-consumption and high-performance prinQ3 ted circuits.
39� 2014 Published by Elsevier B.V.
40

41

42 1. Introduction

43 The development of organic thin-film transistors (OTFTs)
44 has attracted great interest for next-generation flexible de-
45 vices such as electric papers and conformable sensor arrays
46 [1]. In particular, the reports about high-mobility OTFTs
47 beyond 10 cm2/V s [2–4] raised the expectation for the
48 application of the organic semiconductors to high-speed
49 logic circuits such as radio-frequency identification tags,
50 flexible display drivers and wearable computers [5]. A
51 straightforward approach to realizing high-performance
52 OTFTs is to use single-crystalline organic semiconductor
53 channels, since the grain boundaries are known to reduce

54carrier mobility significantly as well as device stability and
55reproducibility. Several groups have already succeeded to
56fabricate quite large crystalline domains of organic semi-
57conductors by solution processes, and all these OTFTs exhib-
58ited considerably high mobilities [3,6,7]. However, the
59application of these methods has been limited so far to
60the preliminary devices where the crystals were grown on
61the smooth and homogeneous surface of SiO2/Si wafers. In
62order to realize logic circuits and active matrix for displays,
63the single-crystalline films need to be formed on top of
64substrates with patterned gate electrodes while the inho-
65mogeneous surface energy, topography and/or morphology
66of the substrates may cause random nucleation of crystals.
67Thus it is a challenging issue to form single-crystalline films
68on top of the patterned substrates by suppressing the
69undesirable nucleation of crystals.
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70 Edge casting is one of the methods to grow large crys-
71 talline domains of organic semiconductor films from a
72 small amount of solution [6]. The method uses a solu-
73 tion-holding piece on substrates in order to control the
74 drying direction of the solution. Because the crystal nucle-
75 ation occurs only at one side of the solution droplet, inch-
76 size crystal domains along the crystal growth direction can
77 be obtained [8]. One unique feature of edge cast is that the
78 crystallization occurs at the liquid/air interface slightly
79 above the contact line; Thus, it is expected that the nucle-
80 ation of crystals should not be affected as much as other
81 solution methods. It is also important to combine this
82 method with the ultrathin gate insulators consisting of a
83 few nm of aluminum oxide and self-assembly monolayers
84 (SAMs) [9–12], since the reduction of operation voltage
85 down to a few volts should be essential for realizing mobile
86 devices driven by batteries or wireless power sources [13].
87 In this paper, we demonstrate the solution process of
88 single-crystalline OTFTs on top of a variety of ultrathin gate
89 dielectrics. High performances were successfully obtained
90 with two kinds of organic semiconductors, 3,11-didecyl-
91 dinaphtho[2,3-d:20,30-d0]benzo[1,2-b:4,5-b0]dithiophene (C
92 10-DNBDT-NW, Fig. 1(a)) [8] and 2,9-didecyl-dinaphtho
93 [2,3-b:20,30-f]thieno[3,2-b]thiophene (C10-DNTT, Fig. 1(b))
94 [14], and with four kinds of gate dielectrics by edge cast
95 method. The highest mobility of 5.2 cm2/V s was achieved
96 at the small gate voltage of 2 V for the combination of C10-
97 DNTT and AlOx without SAM. The variation in device prop-
98 erties is also discussed in terms of the film crystallinity and
99 the surface property of gate insulators.

100 2. Experimental

101 Aluminum gate electrode was deposited on silicon/
102 thermal silicon oxide (500 nm) substrate by thermal evap-
103 oration under 10�7 mbar through a shadow mask [4].
104 Approximately 3.6 nm of aluminum oxide was formed by

105O2 plasma to fabricate hybrid dielectric. The substrates
106were then immersed in the 2-propanol solutions of SAMs
107about 24 h: 0.2 mM 16-phosphonohexadecanoic acid
108(PHDA, Fig. 1(c)), 0.05 mM 11-hydroxyundecylphosphonic
109acid (HO–C11–PA, Fig. 1(d)), 0.1 mM phenylphosphonic
110acid (PhPA, Fig. 1(e)), 0.05 mM tetradecylphosphonic acid
111(C14–PA, Fig. 1(f)), and 0.05 mM 12,12,13,13,14,14,15,
11215,16,16,17,17,18,18,18H-pentadecafluoro-octadecyl phos
113phonic acid (F15C18–PA, Fig. 1(g)) [11]. The bare aluminum
114oxide gate insulator was also used for comparison. The
115capacitances were measured at 0.88 lF/cm2 for PHDA,
1160.75 lF/cm2 for HO–C11–PA, 1.1 lF/cm2 for PhPA and
1171.27 lF/cm2 for bare AlOx, which were measured with
118the Au/insulator/Al structure of 50 � 50 lm in size.
119We used C10-DNBDT-NW and C10-DNTT as channel
120materials. The single crystals of the organic semiconduc-
121tors were grown on the hybrid dielectrics by the edge-cast
122method [15] as shown in Fig. 2(a). C10-DNBDT-NW and
123C10-DNTT were dissolved in 1,2-dimethoxybenzene at
1240.07 wt% and in tetralin at 0.05 wt%, respectively. Then
125the solution was dropped near the edge of a glass piece
126which was placed on the substrate to hold the solution
127[16]. As the solvent evaporated, the edge of the droplet
128shifted toward the glass piece so that the direction of
129the crystal growth is perpendicular to the edge of the
130glass piece. The processes were carried out on a hot plate
131kept at 125 �C for C10-DNBDT-NW and at 100 �C for
132C10-DNTT. After the crystal growth, the films were an-
133nealed in vacuum oven at 100 �C under the pressure of
13410 mbar in order to remove the remaining solvent. The
135thickness of the semiconductor films was estimated at
13610–30 nm by atomic force microscopy (AFM). Finally,
13730 nm-thick gold electrodes for source and drain were
138thermally evaporated in vacuum through shadow masks.
139The channel length was designed to be 20–300 lm, and
140the channel width 500 lm. The device performance was
141measured in air by semiconductor device analyzer
142(B1500A, Agilent).
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Fig. 1. Molecular structures of (a) C10-DNTT, (b) C10-DNBDT-NW, (c) PHDA, (d) HO–C11–PA, (e) PhPA, (f) C14–PA, and (g) F15C18–PA.
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