

Contents lists available at SciVerse ScienceDirect

Organic Electronics

journal homepage: www.elsevier.com/locate/orgel

Highly enhanced electron injection in organic light-emitting diodes with an n-type semiconducting MnO₂ layer

Hyunbok Lee ^a, Jeihyun Lee ^a, Pyungeun Jeon ^a, Kwangho Jeong ^a, Yeonjin Yi ^{a,*}, Tae Gun Kim ^{b,c}, Jeong Won Kim ^{b,c}, Jin Woo Lee ^d

ARTICLE INFO

Article history: Received 15 October 2011 Received in revised form 14 January 2012 Accepted 15 January 2012 Available online 11 February 2012

Keywords:
OLED
Electron injection layer
MnO₂
UPS
XPS
Electronic structure

ABSTRACT

Highly enhanced electron injection is demonstrated with a thin manganese dioxide (MnO₂) electron injection layer (EIL) in Alq₃-based organic light-emitting diodes. Insertion of the MnO₂ EIL between the Al cathode and Alq₃ results in highly improved device characteristics. *In situ* photoelectron spectroscopy shows remarkable reduction of the electron injection barrier without significant chemical reactions between Alq₃ and MnO₂, which could induce Alq₃ destruction. The reduction of the electron injection barrier is due to the n-type doping effect, and the lack of strong interfacial reaction is advantageous with regards to more efficient electron injection than a conventional LiF EIL. These properties render the MnO₂, a potential EIL.

© 2012 Elsevier B.V. All rights reserved.

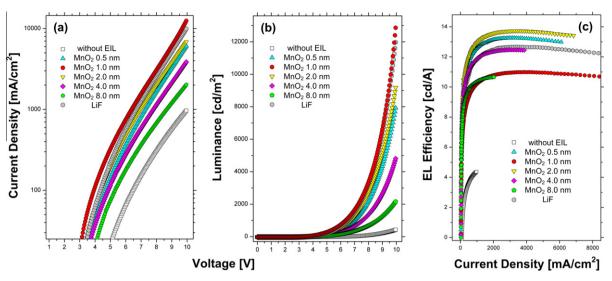
1. Introduction

Organic light-emitting diodes (OLEDs) have been remarkably attractive for the last two decades due to their unique advantages, such as simple fabrication processes, wide viewing angles, light weight, and mechanical flexibility [1]. However, high charge-injection barrier from the electrode to organic semiconducting materials is one of the inveterate obstacles to design highly efficient OLEDs. Lowering the electron injection barrier in OLEDs especially is a prerequisite to balancing electrons with holes within an emission layer to maximize light emission because most organic semiconducting materials have lower electron mobility than that of hole. It has been reported that the insertion of an appropriate electron injection layer (EIL) reduces the electron injection barrier efficiently.

Alkali metals and alkali metal halides have been used as a conventional EIL through the n-type doping effect on an electron transport layer (ETL), such as Alq₃ [2,3]. However, alkali metals are not tractable as an evaporation source and are destructively reactive to the organic molecules. On the other hand, alkali metal halides often show variable performance depending upon the cathode choice [4]. Recently, several alternative EILs, such as alkali metal carbonates, nitride and quinolates [5-11] have been studied and show good electron injection performances. Metal oxides such as ZnO, TiO2 and ZrO2 are also candidates for alternative EILs [12-14]. Recently, Luo et al. reported highly efficient OLEDs with insulating manganese monoxide (MnO) EIL [15]. However, its detailed working mechanism is not yet understood. Furthermore, the semiconducting phase of metal oxide would be more suitable for device performance than the insulating phase.

In this paper, we propose that semiconducting manganese dioxide (MnO₂) could be a potential candidate as a

^a Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemoon-Gu, Seoul 120-749, Republic of Korea


^b Korea Research Institute of Standards and Science, 267 Gajeong-ro, Daejeon 305-340, Republic of Korea

^cUniversity of Science and Technology, 217 Gajeong-ro, Daejeon 305-350, Republic of Korea

^d LG Innotek, 379, Gasoo-Dong, Osan-City, Gyeonggi-Do 447-705, Republic of Korea

^{*} Corresponding author.

E-mail address: yeonjin@yonsei.ac.kr (Y. Yi).

Fig. 1. Measured (a) current density-voltage, (b) luminance-voltage characteristics and (c) EL efficiency of OLEDs with different thicknesses (0, 0.5, 1.0, 2.0, 4.0 and 8.0 nm) of an MnO_2 electron injection layer. The device characteristics with a conventional LiF EIL are also depicted to show the superiority of a MnO_2 EIL.

highly efficient EIL. First, we observed conspicuous enhancements of electron injections with a $\rm MnO_2$ EIL through OLEDs fabrication including current density-voltage-luminance ($\it J-V-L$) measurements. We also discovered the optimum thickness of a $\rm MnO_2$ layer and compared that with a conventional LiF EIL. To elucidate the origin of the electron injection enhancements, we carried out $\it in situ$ photoelectron spectroscopy (PES) experiments. This allowed us to understand the interfacial electronic structures and chemistry which play a crucial role in device performance.

2. Experimental

We fabricated OLEDs with the structure of Al (100 nm)/ MnO₂ (0, 0.5, 1.0, 2.0, 4.0, 8.0 nm)/Alg₃ (50 nm)/NPB (50 nm)/ITO. Organic materials and MnO2 (Sigma Aldrich, 99.99+%) were successively deposited onto the ITO patterned glass substrate by thermal evaporation in an ultrahigh vacuum (UHV) chamber below 5×10^{-8} and 2×10^{-7} Torr at the rates of 0.1 nm/s and 0.01 nm/s, respectively. Devices were then completed by depositing the Al cathode on the sample with the rate of >0.1 nm/s. All the deposition rates and thicknesses were monitored by a quartz crystal microbalance. Active areas of the devices are 0.04 cm². J-V-L characteristics were measured under a dry nitrogen atmosphere using a Keithely 237 and 2400 source measure unit with a photodiode calibrated by a PR650 spectrophotometer. To show the superior electron injection of MnO2 EIL, OLED with LiF EIL is also fabricated with its optimized thickness (0.1 nm) in our preparation condition.

In situ PES experiments were performed using a PSP RE-SOLVE 120 spectrometer in an analysis chamber which is directly connected with a preparation chamber. An ultraviolet (He I, 21.22 eV) and a non-monochromatized X-ray (Mg K α , 1253.6 eV) radiations were used as excitation light

sources. To obtain the secondary electron cutoff (SEC), a sample bias of -10 V was applied in normal emission geometry. We used the same interface formation to that of device fabrication because the electronic structures are significantly varied by their deposition sequence between organic and metal electrode [16]. To investigate the effects of the MnO₂ layer insertion, we prepared Al/Alq₃ and Al/ MnO₂/Alq₃ samples and compared their electronic structures. In both cases, ITO coated glasses were used as substrates after checking if they all had the same work function. The analysis and preparation chamber were maintained at pressures of 3×10^{-9} and 2×10^{-7} Torr, respectively. The deposition rates were cross checked by a calibrated thickness monitor and by the attenuation of core level intensities in X-ray photoelectron spectroscopy. The interfacial electronic structures of Al/LiF/Alq₃ were referred from well-known reports [4,17].

3. Results and discussion

Fig. 1a and b depicts measured *I–V–L* characteristics. Device performances were highly improved by the insertion of the MnO₂ layer. The optimized thickness of a MnO₂ layer was observed at 1.0 nm and device performance decreased gradually as the MnO2 layer thickened due to incremental series resistance. However, the device with a relatively thick MnO2 layer (8.0 nm) still showed better performance than the reference device without MnO₂ insertion. This thickness-independent stability in the device performance originates from the semiconducting nature of MnO₂, which is clear contrast to common EILs such as insulating alkali metal halides [18,19]. As the MnO₂ layer of 1.0 nm is inserted, both current density and luminance increase by more than one order of magnitude at 10 V compared to those of the reference device. Turn on voltage, which is defined as the voltage giving 1 cd/m² luminance, was also significantly reduced from 6.4 V to

Download English Version:

https://daneshyari.com/en/article/10566892

Download Persian Version:

https://daneshyari.com/article/10566892

<u>Daneshyari.com</u>