

Available online at www.sciencedirect.com

Inorganic Chemistry Communications 8 (2005) 254-258

INORGANIC CHEMISTRY COMMUNICATIONS

www.elsevier.com/locate/inoche

Crystal growth and characterization of zinc–(amino-*tris*-(methylenephosphonate)) organic–inorganic hybrid networks and their inhibiting effect on metallic corrosion

Konstantinos D. Demadis *, Stella D. Katarachia, Markos Koutmos ¹

Department of Chemistry, University of Crete, 300 L. Knossos, Heraklion GR-71409, Crete, Greece Received 1 September 2004; accepted 11 December 2004

Abstract

Amino-*tris*-(methylenephosphonate) (AMP, N(CH₂PO₃H₂)₃) forms various organic–inorganic hybrids with divalent metal cations. Zn²⁺ reacts with AMP at a 1:1 ratio by replacing two of the six phosphonic acid protons, while amino N maintains its proton, thus forming a zwitter ion. The product is a polymeric material, Zn[HN(CH₂PO₃H)₃(H₂O)₃]. Its crystal is monoclinic, space group $P2_1/c$, with a = 9.1908(7) Å, b = 16.0054(12) Å, c = 9.6791(7) Å, $\beta = 115.2890(10)^\circ$, V = 1287.37(17) Å³, and Z = 4. The Zn²⁺ ions form zig-zag chains bridged by two of the three phosphonate groups. The third phosphonate group is non-coordinating and involved in hydrogen bonding. The Zn²⁺ centers are located in a slightly distorted octahedral environment and are coordinated by three H₂O molecules in a *mer* fashion, two phosphonate oxygens from the same AMP ligand forming an eight-member chelate and another phosphonate oxygen from a neighboring AMP. Adjacent chains are hydrogen-bonded to each other through P–O–H and H–N donors, and the additional participation of all H₂O hydrogens in H-bonding results in a corrugated sheet-like structure. Zn²⁺ and AMP form a synergistic combination of additives that acts as corrosion inhibitor for carbon steel surfaces. The composition of this protective layer is a Zn–AMP material based on spectroscopic comparisons (FT-IR, XRF and EDS) with authentically prepared Zn–AMP.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Phosphonates; Corrosion; Inhibition; Hybrid materials; Zinc coordination complexes

Phosphonic acids have attracted significant attention due to their utility in supramolecular chemistry and crystal engineering [1]. Metal-phosphonates commonly form pillared-layered inorganic–organic hybrid materials and microporous solids [2]. Their properties can be useful for intercalation, catalysis, sorption, and ion exchange [3]. In these architectures, hydrogen bonds are predominant resulting in one-, two-, and three-dimensional supramolecular networks. Phosphonates are also used extensively in chemical water treatment [4], oil drilling applications [5] and corrosion control [6].

 Zn^{2+} is used extensively as an anodic inhibitor for metallic corrosion protection [7]. Literature reports point to a synergistic action of Zn^{2+} and polyphosphonates that is explained on the basis of metal-phosphonate inhibiting films on the metallic surface [8]. Accurate description of these protective materials is lacking at the molecular level. In this paper, we describe the preparation, crystal growth and crystal and molecular structure of a polymeric inorganic–organic hybrid $Zn[HN(CH_2PO_3H)_3(H_2O)_3]_x$ (Zn–AMP,

^{*} Corresponding author. Tel.: +30 2810 393651; fax: +30 2810 393601.

E-mail address: demadis@chemistry.uoc.gr (K.D. Demadis).

URL: http://www.chemistry.uoc.gr/en/personnel/faculty/demadis. htm.

¹ Present address. Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.

^{1387-7003/\$ -} see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.inoche.2004.12.019

K.D. Demadis et al. | Inorganic Chemistry Communications 8 (2005) 254-258

AMP = amino-*tris*-(methylenephosphonate)) and its application as an inhibitor for the corrosion of steel.

Reaction of AMP and $ZnSO_4 \cdot 7H_2O$ at pH ~ 1 in a 1:1 molar ratio under ambient conditions gives $\{Zn[HN(CH_2PO_3H)_3(H_2O)_3]\}_x$ (Zn–AMP), Eq. (1) (proton content on AMP also shown) [9]

$$\begin{split} &ZnSO_4 \cdot 7H_2O + HN(CH_2PO_3H_2)_2(CH_2PO_3H) \\ &\rightarrow \{Zn[HN(CH_2PO_3H)_3(H_2O)_3]\}_x + H_2SO_4 \\ &+ 4H_2O \end{split} \tag{1}$$

The crystalline Zn–AMP polymeric product is conveniently crystallized from acidic water and isolated by filtration. Free AMP in low pH regions (<1) exists as a "zwitter ion" with two of the phosphonates fully protonated (–PO₃H₂), the third monodeprotonated (–PO₃H⁻) and the amine N protonated [10]. The latter is deprotonated at pH > 13 [11]. Nitrilotriacetic acid exhibits similar behavior [12]. In the presence of Zn²⁺, single deprotonation of two phosphonate groups occurs, rendering the AMP ligand possessing a "2–" overall charge.

In the structure of Zn–AMP [13], each phosphonate group is singly deprotonated, whereas the N atom is protonated. Therefore, AMP maintains its "zwitter ion" character in the crystal lattice. Zn^{2+} is coordinated by three phosphonate O's and three H₂O molecules. Notably, there are no lattice H₂O molecules. The asymmetric unit is shown in Fig. 1(a). AMP forms an eightmember chelate ring with Zn²⁺. Zn–O(P) bond distances range from 2.0459(13) to 2.1218(13) Å. Bond angles point to a slightly distorted octahedral geometry, with the largest deviation being 166.90(6)° for the O12–Zn– O10 angle. The third phosphonate arm is surprisingly *not* coordinated to Zn²⁺, but is exclusively involved in H-bonding through O1, O2, and O3 (*vide infra*).

A zig-zag chain parallel to the *c*-axis is formed by Zn^{2+} , Fig. 1(b). The Zn^{2+} centers are located at the corners of the zig-zag chain, whereas the "linear" portion of the zig-zag is made of the non-coordinating, hydrogen bonded phosphonate groups. Besides the three metalbonded phosphonate oxygens (O4, O7 and O11), three additional oxygens (O5, O8 and O2) are protonated and the remaining three O atoms serve as hydrogen bond acceptors.

There is only one long intramolecular H-bonding interaction (2.469 Å) between O5 (from a Zn-coordinated phosphonate) and O10 from the water located at a *cis* position to it. The presence of a non-coordinated, singly deprotonated phosphonate group in the lattice is somewhat surprising. This phosphonate moiety participates in a complicated H-bonding network that presumably "relieves" the presence of the negative charge. Based on the bond distances of P1–O1 (1.4998 Å) and P1–O3 (1.5202 Å), the P=O and P–O⁻ bonds cannot be unequivocally distinguished. These

 $\begin{array}{c} 05 \\ 011 \\ 010 \\ 02 \\ 03 \\ 011 \\ 010 \\ 02 \\ 011 \\ 006 \\ 011 \\ 010$

Fig. 1. ORTEP of the asymmetric unit of the $Zn[HN(CH_2PO_3H)_3]$ (H₂O)₃]_x polymer ((a), 50% probability ellipsoids). Packing diagram of the Zn–AMP lattice showing the corrugated structure and an isolated zig-zag chain (b).

bond distances point to delocalization of the negative charge over the two P–O bonds. The non-coordinating –PO₃H⁻ moiety participates in six "short" and two "long" hydrogen bonding interactions. The –P1–O2– H9 proton forms a H-bond (1.875 Å) with the O of the P=O moiety that belongs to a phosphonate coordinated to a neighboring Zn^{2+} center. The O3 oxygen of the same moiety interacts via three short interactions with the H of a neighboring free –P–O–H group (1.914 Å), with the H the H–O–P group of a neighboring Zn-coordinated phosphonate (1.891 Å) and with the H (1.963 Å) of a neighboring Zn-coordinated water, O12. O3 also forms two "long" interactions with a Zn-bound Download English Version:

https://daneshyari.com/en/article/10570544

Download Persian Version:

https://daneshyari.com/article/10570544

Daneshyari.com