

Available online at www.sciencedirect.com

Inorganica Chimica Acta 358 (2005) 535-544

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Synthesis, structure and bonding of cadmium(II) thiocyanate systems featuring nitrogen based ligands of different denticity

Suparna Banerjee^a, Biao Wu^b, Paul-G. Lassahn^b, Christoph Janiak^{b,*}, Ashutosh Ghosh^{a,*}

^a Department of Chemistry, University College of Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India ^b Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany

> Received 26 April 2004; accepted 30 July 2004 Available online 21 November 2004

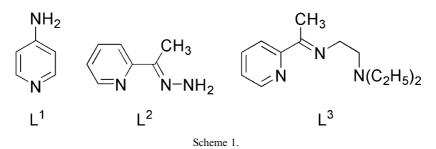
Abstract

Complexes catena-[di(4-amino-pyridine)di(μ -S,N-thiocyanato)cadmium(II)], ${}^{1}_{\infty}$ [Cd(μ -SCN)₂(L¹)₂] (1), catena-[{(1-pyridine-2-yl-ethylene)-hydrazine}di(μ -S,N-thiocyanato)cadmium(II)], ${}^{1}_{\infty}$ [Cd(μ -SCN)₂(L²)] (2), and di- μ -S,N-thiocyanatobis{(*N*,*N*-diethyl-*N'*-(1-pyridine-2-yl-ethylidene)-ethane-1,2-diamine)(*N*-thiocyanato)cadmium(II)}, [Cd(NCS)(μ -SCN)(L³)]₂(3) have been synthesized by reacting cadmium acetate/NH₄SCN with 4-amino-pyridine (L¹), C₅H₄N-C(CH₃)=NNH₂ (L²), and C₅H₄N-C(CH₃)= N-CH₂-CH₂-N(C₂H₅)₂ (L³), respectively, in methanol. Characterization by single-crystal X-ray crystallography shows that in compounds 1 and 2 the cadmium atoms have a 4N2S-hexa-coordination sphere, exhibiting pseudo-octahedral geometry. The cadmium atoms are bridged by two thiocyanate ions generating 1-D polymeric chains. Compound 3 is a centrosymmetric dimeric complex, with the cadmium atom pseudo octahedrally surrounded by a 5N1S coordination sphere. In compound 1 the crystal packing is controlled mainly by interchain N-H···N and C-H··· π interactions between the aminopyridine moieties, whereas in complexes 2 and 3 π -stacking interactions between the pyridyl planes stabilize the interchain or intermolecular packing, respectively. Thiocyanate and pyridylimine chelation to metal center is also scrutinized with EHMO analysis.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Cadmium(II); Thiocyanate; Schiff bases; Bonding; Coordination polymers

1. Introduction


Metal–organic frameworks are widely regarded as promising materials for application in catalysis, separation and molecular recognition [1–4]. In construction of one/two/three dimensional frameworks, multidentate ligands are usually used to bridge metal centers to form polymeric structures. For instance, metal–organic coordination frameworks based on polycarboxylic acid, 4-4'bipyridine and thiocyanates have extensively been studied [5,6]. Coordination polymers of cadmium, with pyridine-type ligands, are also investigated for their fluorescence properties [1,2,7]. Supramolecular contacts such as hydrogen bonding are frequently used as a powerful crystal engineering tool to "control" the packing of the molecular or extended building blocks [8–12]. In addition, π -interactions also offer the propensity for packing control in the solid crystalline state. Aromatic moieties which often occur as part of the organic ligands may either associate via displaced face-to-face π - π [13–17] or edge to face C–H··· π interactions [18–20].

Cadmium thiocyanate adducts of organic ligands are an important class of compounds for the design and preparation of such functional coordination frameworks,

^{*} Corresponding authors. Tel.: +9103323599298; fax: +910333519755.

E-mail addresses: janiak@uni-freiburg.de (C. Janiak), ghosh_59@yahoo.com (A. Ghosh).

^{0020-1693/\$ -} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2004.07.048

where Cd(II) forms stable double SCN bridged chains which are usually oriented along one direction [21]. In most cases, monodentate organic ligands, e.g., methylsubstituted pyridines, benzylamine, dibenzylamine, triphenylamine, 1H-1,2,4-triazole, imidazole, etc., were chosen and they occupy the remaining two trans coordination sites [22]. The steric and electronic effects of the monodentate ligands are found to be capable of modifying the chain structure [22]. With monodentate ligands capable of forming additional H-bonds, the chain structure has been extended to higher dimensional hydrogen bonded architectures [23]. On the other hand, propagation of the cadmium thiocyanate chain in the presence of bidentate or tridentate chelating ligands is not well documented [21g].

We report here the synthesis and crystal structure of three Cd(II) thiocyanate complexes with a monodentate ligand, 4-aminopyridine (L¹), a bidentate ligand, $C_5H_4N-C(CH_3)=NNH_2$ (L²), and a tridentate ligand, $C_5H_4N-C(CH_3)=NCH_2CH_2-N(C_2H_5)_2$ (L³) (Scheme 1). The ligands were chosen in such a way that they could undergo $\pi-\pi$ alignment along with inter-chain H-bonding. The complex with L³ represents a very rare example of a dimeric species in which Cd atoms are doubly bridged by two NCS ligands.

2. Experimental

2.1. Materials and physical measurements

Commercially available solvents such as 4-aminopyridine, hydrazine monohydrate, 2-acetyl-pyridine, N,N-diethylethylenediamine, cadmium acetate dihydrate and ammonium thiocyanate were used without further purification. Elemental analyses were carried out using a Perkin–Elmer 240C elemental analyzer. IR spectra were recorded in KBr (4500–500 cm⁻¹) using a Perkin–Elmer R XI FT-IR spectrophotometer.

2.2. Preparation of ligands

2.2.1. Synthesis of (1-pyridine-2-yl-ethylidene)hydrazine (ligand L^2)

Hydrazine hydrate (85% aqueous, 0.75 g, 15 mmol) and 2-acetyl-pyridine (1.815 g, 15 mmol) were mixed in

methanol (20 ml) and then refluxed for 3 h. The resulting solution was evaporated to 5 ml and cooled to room temperature. Upon cooling the solution, a yellow solid precipitated, was collected by filtration and dried in vacuum over fused CaCl₂. Yield: 1.822 g (90%). (Found: C, 62.20; H, 6.62; N, 31.08%. Calc. for $C_7H_9N_3$: C, 62.22; H, 6.66; N, 31.11.) IR (ν /cm⁻¹): 3345–3285 (ν NH₂), 1640 (ν C=N), 1590 (δ N-H), 1447–1302 (ν Pyridine ring).

2.2.2. Synthesis of N,N-diethyl-N'-(1-pyridin-2-ylethylidene)-ethane-1,2-diamine (ligand L^3)

This ligand was prepared by a procedure similar to that for L², by starting with *N*,*N*-diethylethylenediamine (1.74 g, 15 mmol) and 2-acetyl-pyridine (1.815 g, 15 mmol) to obtain a yellow liquid. Light yellow microcrystals were obtained by recrystallization from *n*-hexane. Yield: 2.792 g (85%). (Found: C, 71.20; H, 9.55; N, 19.22%. Calc. for $C_{13}H_{21}N_3$: C, 71.23; H, 9.58; N, 19.17.) IR (ν/cm^{-1}): 1648 ($\nu_{C=N}$).

2.3. Synthesis of metal complexes

2.3.1. $Cd(\mu$ -SCN)₂(4-H₂N-C₅H₄N₂]_{∞} (1)

To a methanol solution (5 ml) of Cd(OAc)₂ · 2H₂O (0.53 g, 2 mmol) was added a methanol solution (10 ml) of NH₄SCN (0.30 g, 4 mmol). The solution was stirred for 10 min and the resultant colorless solution was then added to 15 ml of 4-amino-pyridine (L¹) solution (0.188 g, 2 mmol). The filtrate was allowed to stand in air at room temperature for 24 h, yielding colorless crystals. Yield: 0.388 g (95%). (Found: C, 34.54; H, 2.87; N, 20.15%. Calc. for C₆H₆Cd_{0.50}N₃S: C, 34.58; H, 2.88; N, 20.17.) IR (ν /cm⁻¹): 3297–3390 (ν _{NH₂}), 2076 (ν _{SCN}).

2.3.2. $Cd(\mu$ -SCN)₂{2-C₅H₄N-C(CH₃)=NNH₂}]_{∞} (2)

Cd(OAc)₂ · 2H₂O (1.33 g, 5 mmol) dissolved in methanol (20 ml) was added to a methanolic solution (10 ml) of NH₄SCN (0.76 g, 10 mmol) followed by ligand L² (0.34 g, 2.5 mmol) dissolved in (10 ml) methanol. The mixture was stirred for few minutes and dried in vacuo. Colorless crystals suitable for X-ray diffraction were obtained by dissolving the precipitate in hot DMSO and avoiding light for 24 h. Yield: 1.545 g (85%). (Found: C, 29.70; H, 2.45; N, 19.26%. Calc. for C₉H₉CdN₅S₂: C, 29.71; H, 2.47; N, 19.26.) IR(ν /cm⁻¹): 3290–3340 (ν _{NH₂}), 2096 (ν _{SCN}), 1596 (ν _{C=N}). Download English Version:

https://daneshyari.com/en/article/10571872

Download Persian Version:

https://daneshyari.com/article/10571872

Daneshyari.com