

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 126 (2005) 27-31

www.elsevier.com/locate/fluor

Hydrolysis in the system LiPF₆—propylene carbonate—dimethyl carbonate—H₂O

Andriy V. Plakhotnyk^a, Ludger Ernst^b, Reinhard Schmutzler^{b,*}

^aDepartment of Chemistry and Environmental Engineering, Dniepropetrovsk National University of Railway Transport,

Academician Lazaryan Street, 2, 49010 Dniepropetrovsk, Ukraine

^bInstitut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329, D-38023 Braunschweig, Germany

Received 17 May 2004; received in revised form 27 August 2004; accepted 20 September 2004 Available online 25 November 2004

Abstract

¹⁹F and ³¹P NMR spectroscopy were used to study the kinetics of the hydrolysis of LiPF₆ in the homogenous solvent system propylene carbonate (PC)—dimethyl carbonate (DMC)—H₂O. It was found that the main products of the hydrolysis are HF, LiPO₂F₂ and Li₂PO₃F. The content of POF₃ and PF₅ was negligibly low. We set up a hypothesis that the main factor determining the rate of the process is the so-called 'secondary' catalytic effect, caused by solvated H⁺ ions.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Lithium hexafluorophosphate; hydrolysis; acidic catalysis

1. Introduction

Solutions of lithium hexafluorophosphate in aprotic organic solvents are widely used as electrolytes in rechargeable lithium cells; see, e.g. [1-4]. Taking into consideration the high hygroscopicity of LiPF₆, such systems are always contaminated with a certain amount of water that gives rise to hydrolysis of the complex fluoro anion. The products formed, especially HF, have a negative influence on the performance of lithium batteries. There are a number of publications dedicated to the problem of hydrolytic stability of the electrolytes containing lithium hexafluorophosphate, various aprotic solvents and water as well as to the use of water-binding additives [5-8]. At the same time, the reaction mechanism of the hydrolysis of $LiPF_6$ in the systems studied is not clear. It is usually supposed [6,9,10] that in the first stage of the reaction, the complex decomposes forming phosphorus pentafluoride and lithium fluoride

 $LiPF_6 \rightarrow LiF + PF_5, \tag{1}$

* Corresponding author. Fax: +49 531 391 5387.

followed by the interaction between the phosphorus pentafluoride formed and water,

$$PF_5 + H_2O \rightarrow POF_3 + 2HF.$$
⁽²⁾

Despite the fact that the data on the thermal stability of LiPF_6 are somewhat contradictory [11–15], both literature data and our experimental evidence indicate that, at room temperature, the decomposition of LiPF_6 , producing gaseous phosphorus pentafluoride and solid lithium fluoride according to Eq. (1), is negligible. However, the equilibrium of the process discussed could be shifted to the right due to the interaction between PF₅ and the solvent [6,13,16,17], and in this case, the above-mentioned mechanism cannot be excluded. Quantum chemical calculations [6,18] show the significance of the polarizing influence of Li⁺ ions on the first coordination sphere of the complex anion. As a result, both the thermal and the hydrolytic stability of LiPF₆ are lowered, compared with hexafluorophosphates of other alkali metals.

At the same time, our estimation of the influence of Li^+ ions on the kinetics of the hydrolysis of PF_6^- and other fluoride complexes [19–22] allowed us to doubt that the low hydrolytic stability of LiPF₆ in aprotic solvents contami-

E-mail address: r.schmutzler@tu-bs.de (R. Schmutzler).

^{0022-1139/\$ –} see front matter \odot 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2004.09.027

nated by water is caused solely by the direct influence of Li⁺ ions which initiate the mechanism of hydrolysis suggested in [6,9,10]. In this paper, we made an attempt to use ¹⁹F and ³¹P NMR spectroscopy to study the hydrolysis of LiPF₆ in a PC/ DMC mixture containing 0.5% of water, and to put forward a hypothesis about the reaction mechanism.

2. Results and discussion

In Fig. 1, are presented typical ¹⁹F (Fig. 1a) and ³¹P (Fig. 1b) NMR spectra of the solutions containing the starting material (LiPF₆) and the products of its hydrolysis. The ¹⁹F spectra consist of the typical doublets with chemical shifts, $\delta_{\rm F} = -72.4$ ppm [*J*(P,F) = 708 Hz] that is assigned to PF₆⁻, -76.7 ppm [*J*(P,F) = 934 Hz] (PO₃F²⁻, but see below), and -83.8 ppm [*J*(P,F) = 975 Hz] (PO₂F₂⁻), as well as the singlet with $\delta_{\rm F} = -153.7$ ppm belonging to HF. The intensities of the signals of other P–F compounds that could possibly be assigned to either POF₃ or solvated PF₅ are

much lower. The signal assignments are based both on literature data [23–25] and on the analysis of the ³¹P NMR spectra. The latter contain a septet with $\delta_P = -146.1$ ppm [J(P,F) = 708 Hz] belonging to PF_6^- , a triplet with $\delta_P = -21.6$ ppm [J(P,F) = 975 Hz] ($PO_2F_2^-$), a doublet with $\delta_P = -10.1$ ppm [J(P,F) = 934 Hz] (PO_3F^{2-}) as well as a singlet attributed to H₃PO₄ that could be formed in the final stage of the hydrolysis. The intensities of the other signals are too low to be clearly seen in the spectra. Thus, we found that among the fluorine-containing products of the hydrolysis, only $PO_2F_2^-$, PO_3F^{2-} and HF are present in significant amounts; the content of POF_3 (or solvated PF_5) is considerably lower.

We performed a check on the identity of PO_3F^{2-} by recording ¹⁹F and ³¹P NMR spectra of Na₂PO₃F using PC/ DMC (1:1) plus a few drops of water as the solvent. Acetone-d₆/H₂O (2:1) was also used because it provided better solubility for Na₂PO₃F and gave similar NMR data: $\delta_F = -72.3$ ppm, $\delta_P = +2.6$ ppm, J(P,F) = 868 Hz. These values do not agree well with those of the signals assigned

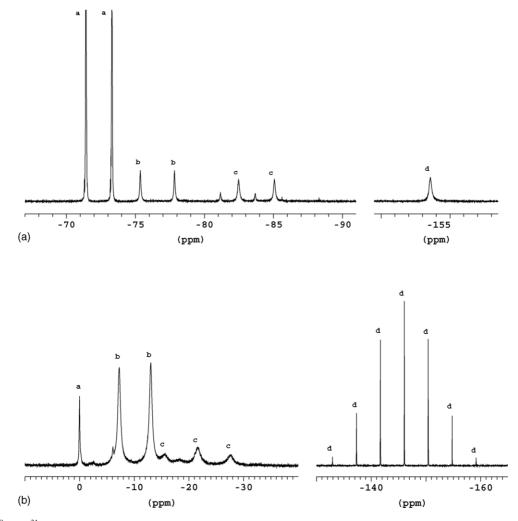


Fig. 1. Typical ¹⁹F and ³¹P NMR spectra of the solutions containing LiPF₆ and the products of its hydrolysis. (a) Signals a, b, c and d are assigned to PF_6^- , PO_3F^{2-} , $PO_2F_2^-$ and HF, respectively. (b) Signals a, b, c and d belong to H_3PO_4 (probably), PO_3F^{2-} , $PO_2F_2^-$ and PF_6^- , respectively.

Download English Version:

https://daneshyari.com/en/article/10573486

Download Persian Version:

https://daneshyari.com/article/10573486

Daneshyari.com