

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 690 (2005) 1645-1658

Journal ofOrgano metallic Chemistry

www.elsevier.com/locate/jorganchem

New cationic palladium (II) and rhodium (I) complexes of [Ph₂PCH₂C(Ph)=N(2,6-Me₂C₆H₃)]

Sofia I. Pascu *, Karl S. Coleman, Andrew R. Cowley, Malcolm L.H. Green *, Nicholas H. Rees

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK

Received 6 December 2004; accepted 14 January 2005

Abstract

Treatment of the bulky iminophosphine ligand $[Ph_2PCH_2C(Ph)=N(2,6-Me_2C_6H_3)]$ (L) with $[M(CH_3CN)_2(ligand)]^{+n}$, where for M = Pd(II): ligand = η^3 -allyl, n = 1, and for M = Rh(I), ligand: $2(C_2H_4)$, 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes $[Pd(\eta^3-C_3H_5)(L)][BF_4]$ (1), $[Rh(cod)(L)][BF_4]$ (2), $[Rh(CO)(CH_3CN)(L)][BF_4]$ (3), and *cis*- $[Rh(L)_2][BF_4]$ (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and *n*-butyl acrylate. © 2005 Elsevier B.V. All rights reserved.

Keywords: Rhodium(I); Pd(II)-allyl; Iminophosphines; CO ethylene copolymerisation; Heck reactions

1. Introduction

Cationic four-coordinate Pd(II) and Rh(I) complexes incorporating tertiary phosphines and olefins (such as allyl or 1,5-cod) are of widespread interest as catalysts precursors in organic synthesis and species such as $[Rh(L_2)_2]^+$ (where L₂ is a bidentate nitrogen-phosphorus ligand) [1-4] have been shown to catalyse decarbonylation of aldehydes. Furthermore, there is considerable current interest in hybrid P/N ligands and a search in the Cambridge Structure Database revealed that although a vast number of Groups 9-10 complexes with nitrogen and phosphorus ligands have been characterised structurally, only a relatively small number of Pd(II) cations [5-53] and Rh(I) cations [54-65] containing bidentate $N(sp^2)$ – $P(sp^3)$ donors are reported. Since bulky substituents at the aryl groups of $N(sp^2)$ donors have been found to strongly influence the catalytic activity and selectivity of Group 10 complexes [66], it is surprising that no Rh(I) complexes of ligands combining tertiary phosphine donors and $(sp^2)N$ -aryl donors with bulky *ortho* substituents have been structurally investigated. To date, no Rh(I) complexes of bulky iminophosphines such as [Ph₂PCH₂C(Ph)=N(2,6-R₂C₆H₃)] (where R = H, alkyl, aryl) are known.

We have been interested in studying neutral and cationic group 10 complexes of hybrid hemi-labile ligands, and particularly featuring a bulky iminophosphine and a diphenylphosphino group. The present work continues our study on the synthesis, reactivity and catalysis of neutral Ni(II), Pd(II) and Pt(II) complexes of enolisable iminophosphine ligands with flexible backbone such as [Ph₂PCH₂C(Ph)=N(2,6-R₂C₆H₃)] (where R = H, Me, iPr) [67]. Herein, we are reporting the synthesis and spectroscopic studies of new organometallic cationic Pd(II) and Rh(I) complexes of [Ph₂PCH₂C(Ph)=N-(2,6-Me₂C₆H₃)] (L). The activity of a new Pd(II) η^3 -allyl complex in typical C–C coupling reactions, such as CO/ ethylene copolymerisation and the Heck coupling of an activated olefin with an aryl-bromide, was tested.

^{*} Corresponding authors. Present address: Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK (S.I. Pascu). Tel.: +1223 336317; fax: +1223 3363017.

E-mail address: sip22@cam.ac.uk (S.I. Pascu).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2005.01.016

2. Results and discussions

2.1. Syntheses

Bridge cleavage reactions of dimeric η^3 -allyl complexes such as $[Pd(\eta^3-allyl)(\mu-Cl)]_2$ are known to leave the palladium- π -allyl groups intact [68]. The cationic η^3 -allyl complex [Pd(η^3 -allyl)(L)][BF₄] (1) was obtained by the reaction between $[Pd(\eta^3-allyl)(MeCN)_2][BF_4]$ (prepared in situ, after reacting $[Pd(\eta^3-allyl)Cl]_2$ with one equivalent of AgBF4 in CH3CN) and one equivalent of the compound $[Ph_2PCH_2C(Ph)=N(2,6-Me_2C_6H_3)]$ (L) (Scheme 1). Complex 1 is stable in the solid state and can be exposed to air for up to 2 h without any apparent decomposition. However, solutions in halogenated solvents at room temperature lead to slow decomposition but they are stable for weeks at -20 °C under N₂. The complexes $[Rh(cod)(L)][BF_4]$ (2), [Rh(CO)- $(CH_3CN)(L)$ [BF₄] (3) and [Rh(L)₂][BF₄] (4) (Scheme 1) were made using a 1:2:2 ratio of Rh-precursor $[RhCl(cod)]_2$ (in case of 2), $[RhCl(CO)_2]_2$ (in case of 3) or $[RhCl(C_2H_4)_2]_2$ (in case of 4), AgBF₄ and the ligand L, in CH₃CN solutions at room temperature. [Rh(cod)(L)][BF₄] (2) was isolated in 75% yield. When the precursor [RhCl(CO)₂]₂ was used, the complex [Rh(CO)(CH₃CN)(L)][BF₄] (3) was isolated in 62% yield and not the expected compound [Rh(CO)₂(L)][BF₄]. If the complex $[Rh(CO)_2(L)][BF_4]$ formed initially as an intermediate, a *trans* effect of the PPh₂ ligand moiety in the metal complex would lead to the weakening of the corresponding M-CO bond. This could be responsible for the lability (in the CH₃CN solution) of the CO group. With [RhCl(C₂H₄)₂]₂, AgBF₄ and L in CH₃CN, a small amount of red crystals were obtained, together with an unidentifiable mixture of products. The red crystals were shown by ¹H NMR spectroscopy and X-ray diffraction to be cis-[Rh(L)₂][BF₄] (4). There was no evidence for the expected products [Rh(C₂H₄)₂(L)][BF₄] or [Rh(CH₃CN)(C₂H₄)(L)][BF₄]. The reaction was repeated using [RhCl(C₂H₄)₂]₂, AgBF₄ and L in a 1:2:4 ratio, and led to similar observation. Complex 4 was formed in 35% yield. Finally, reaction between $[Rh(CO)(CH_3CN)(L)][BF_4]$ (3) and one equivalent of free L was performed in CH₂Cl₂, and again gave only the *cis* isomer of $[Rh(L)_2][BF_4]$ (4).

2.2. Spectroscopic investigations

The complexes 1–4 have been characterised by elemental analysis, mass spectrometry (FAB), infrared and ¹H, ¹³C{¹H} and ³¹P{1^H} NMR spectroscopy (in CD₂Cl₂). Full assignments are given in Table 1.

The IR spectrum of 1 (in CD_2Cl_2) showed a $\nu_{C=N}$ band at 1572 cm⁻¹, which is significantly shifted from 1634 cm⁻¹ for the free ligand [67], indicating that the iminophosphine is chelated to the metal centre. The IR

spectra of complexes 2–4 (in CD_2Cl_2) showed bands at 1539 (2), 1538 (3) and 1559 cm⁻¹ (4) assignable to $v_{C=N}$. For 3, a broad band at 2304 cm⁻¹ indicated the presence of coordinated CH₃CN and the band at 2004 cm⁻¹ was assigned to theCO stretching vibration. The presence of CH₃CN and CO ligands was also confirmed by ¹³C{¹H} NMR spectroscopy. In all cases, IR spectra (CD₂Cl₂) showed broad bands in the region 1220 cm⁻¹ corresponding to [BF₄]⁻.

The ${}^{31}P{}^{1}H{}$ NMR spectrum (CD₂Cl₂) of [Pd(η^3 allyl)(L)][BF₄] (1) exhibited a singlet at δ 37.5, consistent with the coordination of the phosphine group to the palladium (II) centre (³¹P NMR resonance for the Z isomer of the free ligand is δ -19.8) [67]. The temperature dependence of the NMR spectra of η^3 -allyl Pd(II) complexes both in the presence and absence of coordinating ligands has been described [68,69]. In accordance, the allyl complex $[Pd(\eta^3-allyl)(L)][BF_4]$ (1) was found stereochemically non-rigid in CD₂Cl₂. The ¹H NMR spectrum of 1 (room temperature, CD_2Cl_2) showed diastereotopic methylene protons of the ligand as a pair of doublet of doublets at δ 4.57 and 4.34 ($J_{\rm HP}$ = 10.7 Hz, $J_{\rm HH}$ = 7.4 Hz). The two methyl groups of Me₂C₆H₃ are also inequivalent, and the corresponding resonances were observed as singlets at δ 2.10 and 2.02. The aromatic protons were found as complex multiplets between δ 7.77 and δ 6.98. The ¹H NMR spectrum, of ABCDX type, exhibited five resonances assigned to the η^3 -allyl group between 30 and $-80 \,^{\circ}\text{C}$ (Table 1). The assignment of the ¹H NMR spectrum was assisted by ¹H –¹H COSY and nOe difference experiments Strong nOes of H_a^5 with H_2 and H_3 , as well as with the o-PPh₂ protons of the ligand were observed. Irradiating H_a^1 at room temperature and +30 °C, the exchange between H_a^1 and H_a^2 is observed (negative nOe) as well as nOe's and transferred nOe's with the PPh₂ protons, H_a^{5} and H_a^4 . Exchange between H_1 and H_2 is observed at +30, +20 and + 10 °C. Between 0 and -80 °C, no H_{a}^{1}/H_{a}^{2} exchange nOe is observed, however, the complete freezing of exchange processes could not be achieved even upon cooling to -80 °C. For square-planar allyl complexes of mixed hard and soft donor ligands, it is documented that the syn-anti interchange of the allyl protons takes place through the $\eta^3 - \eta^1 - \eta^3$ interconversion process (Scheme 2) [24,70,71]. The PPh₂ group weakens the trans Pd-CH₂ bond. Therefore, the opening of the allyl ring is promoted and the interchange of the syn-anti protons H_a^3 and H_a^4 occurs due to rotation about the σ bonds, as suggested by VT ROESY experiments.

The ¹³C{¹H} NMR spectrum of **1** exhibited doublet resonances at δ 181.7 (² J_{PC} = 7.9 Hz) and δ 46.3 (¹ J_{PC} = 28 Hz), which were assigned to the *C*=N and methylene carbons of the iminophosphine ligand, respectively. The chemical shift of the C=N function is shifted compared to the chemical shift for the free ligand Download English Version:

https://daneshyari.com/en/article/10575094

Download Persian Version:

https://daneshyari.com/article/10575094

Daneshyari.com