SOLID STATE CHEMISTRY Journal of Solid State Chemistry 178 (2005) 1241-1246 www.elsevier.com/locate/jssc # K₂Li(NH₂)₃ and K₂Na(NH₂)₃—synthesis and crystal structure of two crystal-chemically isotypic mixed-cationic amides ## Florian Kraus, Nikolaus Korber* Institut für Anorganische Chemie der Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany Received 27 August 2004; received in revised form 4 October 2004; accepted 5 October 2004 #### **Abstract** $K_2Li(NH_2)_3$ (1) was the only crystalline product obtained from the reaction of potassium with dilithium decahydro-*closo*-decaborate $Li_2B_{10}H_{10}$ in liquid ammonia at $-38\,^{\circ}$ C. The compound crystallizes in the space group $P4_2/m$ with Z=4, $a=6.8720(5)\,\text{Å}$, $c=11.706(1)\,\text{Å}$ and $V=552.81(7)\,\text{Å}^3$. The investigated crystal-chemically isotypic sodium compound $K_2Na(NH_2)_3$ (2) was merohedrally twinned and crystallized from a reaction mixture containing potassium and disodium decahydro-*closo*-decaborate $Na_2B_{10}H_{10}$ in liquid ammonia with $a=7.0044(5)\,\text{Å}$, $c=12.362(1)\,\text{Å}$ and $V=606.48(9)\,\text{Å}^3$. The compounds contain pairs of edge sharing tetraamidolithium or tetraamidosodium tetrahedra which are interconnected by potassium ions forming three-dimensional infinite networks. © 2004 Elsevier Inc. All rights reserved. Keywords: Amide; Lithium; Sodium; Potassium; Crystal structure; Liquid ammonia #### 1. Introduction Due to their widespread use, alkali metal amides are of general interest in all fields of chemistry and have been investigated for about 50 years by diffraction methods [1–12]. Mixed cationic systems of alkali metal amides have first been investigated by Franklin, who also encountered the formation of (1) and (2) in liquid ammonia and reported their very low solubility [13]. In recent times, Jacobs and coworkers did thorough research on mixed cationic alkali metal amides [14–19] where (1) and (2) were also prepared by high-pressure synthesis in steel cells [20,21]. However, the structural analysis of (1) was of low quality due to incomplete data. Here we present the structural characterization of the mixed cationic alkali metal amides $K_2Li(NH_2)_3$ (1) and $K_2Na(NH_2)_3$ (2). The asymmetric unit of structure (1) contains three potassium ions on the special Wyckoff positions 2a, 2f, 4i and a lithium ion on the 4j position. As anions, two amide ions NH_2^- are present, one resides on the mirror plane (4j), whereas the other one is located on the 8k position. All hydrogen atoms also reside on the latter position. The same holds true for the structure of (2) which is crystal-chemically isotypic. N(1) on the 4*j* position has only one not symmetry equivalent hydrogen atom H(1A) with a bond length of 0.84(2) Å in (1) or 0.88(2) Å in (2), attached. N(2) on the general 8*k* position carries two hydrogen atoms H(2A) and H(2B) in a distance of 0.95(2) and 0.81(2) Å in (1) and 0.95(2) and 0.82(2) Å in (2). ^{2.} Results and discussion ^{*}Corresponding author. Fax: +49 941 943 1812. *E-mail address:* nikolaus.korber@chemie.uni-regensburg.de (N. Korber). The lithium ion, or the sodium ion, respectively, is coordinated by the two not symmetry equivalent amide anions. By application of the 4_2 screw axis, the lithium (sodium) ion is surrounded by amide anions in a shape similar to a tetrahedron, but also another symmetry equivalent tetraamidolithium (sodium) tetrahedron is generated which shares a common edge to the former, formally resulting in a μ -diamido-bis(lithiumdiamide) ion $[\text{Li}_2(\text{NH}_2)_6]^{4-}$ in (1) or a μ -diamido-bis(sodiumdiamide) ion $[\text{Na}_2(\text{NH}_2)_6]^{4-}$ in (2), respectively (Fig. 1). These pairs of edge sharing tetrahedra of $[M_2(NH_2)_6]^{4-}$ (M = Li, Na) are interconnected via the three not symmetry equivalent potassium ions. Fig. 2a depicts the coordination of the edge sharing tetrahedra by the potassium ion K(1). The latter shows Fig. 1. shows the μ -diamido-bis(lithiumdiamide) ion (a) and the μ -diamido-bis(sodiumdiamide) ion (b). Thermal ellipsoids at 70% probability level. Selected bond lengths [Å] and angles [°]: Li(1)–N(1) 2.056(5), Li(1)–N(2) 2.086(3), Li(1)–N(1)#7 2.375(5), N(1)–Li(1)–N(2) 115.8(1); Na(1)–N(1) 2.537(3), Na(1)–N(2) 2.339(2), Na(1)–N(1)#19 2.393(3), N(1)–Na(1)–N(2) 107.69(6). Symmetry transformations to generate equivalent atoms: #3 -x+1, -y-1, -z; #5 x, y, -z; #7 1-x, 1-y, z; #12 1-x, 1-y, -z; #16 x, y, -z; #19 -x+1, -y-1, z. an octahedron-shaped coordination by the amide anions (Fig. 2b). Such an octahedron is connected to another symmetry equivalent one, forming a pair of edge sharing octahedra. These octahedron pairs share edges and corners with the edge sharing tetrahedra of μ -diamido-bis(lithiumdiamide) or μ -diamido-bis(sodiumdiamide) and generate a three-dimensional infinite network shown in Fig. 2c. The coordination sphere of K(2) is also octahedronlike. These octahedra are connected to the edge sharing tetrahedra via common edges and corners. Potassium ion K(2) and its symmetry equivalents form, together with the edge sharing tetrahedral, a two-dimensional infinite net in the ab-plane (Fig. 3). Additionally, the $[M(NH_2)_6]^{\frac{1}{4}}$ (M = Li in (1) or Na in (2)) anions are connected via K(3) forming a $_{\infty}^{1}$ [KM₂(NH₂)₆]-strand (Fig. 4), which runs along the c-axis. Taking all the previously mentioned structural elements together, the structure of $K_2Li(NH_2)_3$ and $K_2Na(NH_2)_3$ is obtained (Fig. 5). #### 3. Experimental part All work was done excluding moisture and air in an atmosphere of purified argon. $Na_2B_{10}H_{10}$ was obtained by ion exchange of $[HNEt_3]_2[B_{10}H_{10}]$ with NaOH followed by thorough drying in vacuo [22]. For the preparation of (1), a Schlenk tube was charged with a five-fold excess of distilled lithium to one equivalent of $Na_2B_{10}H_{10}$ (2.8 mmol). Approximately 15 mL of dried ammonia were condensed into the tube at $-78\,^{\circ}$ C, yielding a blue solution of the alkali metal. After storage at $-38\,^{\circ}$ C for two weeks the solution decolorized and white octahedral crystals formed which were subjected to low temperature X-ray analysis. Crystallographic data of (1): $H_6K_2LiN_3$, M = 133.22 g/mol, tetragonal, space group $P4_2/m$ (No. 84), $a = 6.8720(5) \text{ Å}, c = 11.706(1) \text{ Å}, V = 552.81(7) \text{ Å}^3, Z = 4,$ $\rho_{\text{calc}} = 1.601 \,\text{Mg m}^{-3}, \quad \mu(\text{Mo}K_{\alpha}) = 1.566 \,\text{mm}^{-1}. \quad \text{Bruker}$ Smart Apex CCD-diffractometer with graphite monochromator [23], Mo K_{α} -radiation $\lambda = 0.71073 \,\text{Å}$, T =123(1) K, ω -scan, 6677 measured reflections (2.96° $\leq \theta \leq$ 28.05° , $-9 \le h \le 9$, $-9 \le k \le 8$, $-15 \le l \le 15$), 697 independent reflections, 620 independent reflections with $I > 2\sigma(I)$ ($R_{\text{int}} = 0.0317$), numerical absorption correction [24]. Solution using direct methods (SHELXS97) [25], refinement on F^2 (SHELXL97) [26]. All atoms were localized by Fourier cycling methods and refined isotropically, non-hydrogen atoms anisotropically using 45 refined parameters. The refinement converged (Δ / $\sigma_{\text{max}} = 0.000$) at w $R_2 = 0.0607$ (all reflections), conventional R = 0.0234 for $I > 2\sigma(I)$, S = 1.139. Residual electron density was $0.324/-0.323 \,\mathrm{e\,\mathring{A}^{-3}}$. To certify the ### Download English Version: # https://daneshyari.com/en/article/10576260 Download Persian Version: https://daneshyari.com/article/10576260 <u>Daneshyari.com</u>