#### Polyhedron 33 (2012) 25-32

Contents lists available at SciVerse ScienceDirect

### Polyhedron

journal homepage: www.elsevier.com/locate/poly

# Syntheses, structures and magnetic properties of dinuclear oxo-bridged iron(III) complexes

Jong Won Shin, Sankara Rao Rowthu, Ju Eun Lee, Hong In Lee, Kil Sik Min\*

Department of Chemistry Graduate School and Green-Nano Materials Research Center, Kyungpook National University, Daegu 702-701, Republic of Korea

#### ARTICLE INFO

Article history: Received 28 July 2011 Accepted 2 November 2011 Available online 23 November 2011

Keywords:Dinuclear iron(III) complexOxo-bridged complexCrystal structureAntiferromagnetic interaction $\pi-\pi$  interactionHydrogen bonding interaction

#### ABSTRACT

The reaction of tris(2-pyridylmethyl)amine (TPyA)/N,N-bis(2-pyridylmethyl)-2-aminoethanol (bpaeOH), H<sub>2</sub>DHBN/Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>/NaN<sub>3</sub> and Fe(II/III) ions in MeOH leads to the isolation of three iron(III) dimeric complexes, namely [(TPyA)(DHBN)Fe<sup>III</sup>OFe<sup>III</sup>(TPyA)(DHBN)]-2H<sub>2</sub>O (**1**), [(bpaeOH)(C<sub>2</sub>O<sub>4</sub>)Fe<sup>III</sup>OFe<sup>III</sup>(C<sub>2</sub>O<sub>4</sub>)(bpae-OH)]-2H<sub>2</sub>O (**2**) and [(TPyA)(N<sub>3</sub>)Fe<sup>III</sup>OFe<sup>III</sup>(N<sub>3</sub>)(TPyA)](ClO<sub>4</sub>)<sub>2</sub> (**3**) (H<sub>2</sub>DHBN = 3,4-dihydroxybenzonitrile). These complexes have been investigated by single crystal X-ray diffractometry and magnetochemistry. Complexes **1–3** show dimeric structures with a bridging oxo (O<sup>2-</sup>) ion, and all the iron(III) ions have a distorted octahedral geometry. Complexes **1** and **3** have offset face-to-face  $\pi$ - $\pi$  interactions between the dimers and possess a supramolecular structure, while **2** has O-H···O hydrogen bonding interactions between the dimers, which gives rise to a 1-D chain structure. These ( $\mu$ -oxo)diiron(III) complexes exhibit antiferromagnetic interactions [**1**: g = 2.0,  $J/k_{\rm B}$  = -112 K (-78 cm<sup>-1</sup>),  $\theta$  = -0.29 K,  $\rho$  = 0.035; **2**: g = 2.0,  $\rho$  = 0.009]. These indicate that very strong antiferromagnetic interactions occur via the oxo bridge within the iron(III) dimer and weak antiferromagnetic interactions exist between the dimers.

© 2011 Elsevier Ltd. All rights reserved.

#### 1. Introduction

The design and preparation of polynuclear iron(III) complexes has enabled the understanding and development of molecule-based magnetic materials and the structural elucidation of metalloenzymes in metalloproteins [1]. Of these complexes, oxo-bridged diiron(III) complexes have attracted the attention of bioinorganic chemists as these linkages have been found in many metalloenzymes, such as methane monooxygenase, ribonucleotide reductase and purple acid phosphatases [2]. Furthermore, these systems also show antiferromagnetic coupling attributable to super-exchange coupling of the S = 5/2 ferric ions via the linking ligands, similar to the enzymes. In this research we have used tetradentate tripodal ligands, such as tris(2-pyridylmethyl)amine (TPyA) and N,N-bis(2pyridylmethyl)-2-aminoethanol (bpaeOH), as capping ligands to obtain oxo-bridged dinuclear complexes [3]. In particular, the bpae-OH ligand is a multifunctional ligand, due to the potential N3 donor from the bis(picoly1) amine moiety and the oxygen atom acting as a proton donor/acceptor. The apical nitrogen atoms of the TPyA and bpaeOH ligands can be coordinated via three different binding modes in monooxo-bridged iron(III) complexes, for example, symmetrical [both *trans* to L or the  $\mu$ -O<sup>2-</sup> group] and unsymmetrical [one apical nitrogen atom trans to L, the other trans to  $\mu$ -0<sup>2-</sup>] [4]. Symmetrical structures have been found for  $[(TPyA)(CI)Fe^{III} OFe^{III}(CI)(TPyA)]^{2+}$ ,  $[(TPyA)(OH)Fe^{III}OFe^{III}(OH)(TPyA)]^{2+}$  and  $[(TPyA)(H_2O)Fe^{III}OFe^{III}(H_2O)(TPyA)]^{4+}$  [5], while unsymmetrical structures have been elucidated for  $[(TPyA)(F)Fe^{III}OFe^{III}(F)(TPyA)]^{2+}$ ,  $[(TPyA)(OH)Fe^{III}OFe^{III}(H_2O)(TPyA)]^{3+}$  and  $[(5-Et-TPyA)(OH)Fe^{III}OFe^{III}(H_2O)(5-Et-TPyA)]^{3+}$  [4,5a,6]. Herein, we report the syntheses, structures and magnetic properties of the oxo-bridged iron(III) dinuclear complexes [(TPyA)(DHBN)Fe^{III}OFe^{III}(TPyA)(DHBN)]\cdot 2H\_2O(1), [(bpaeOH) (C\_2O\_4)Fe^{III}OFe^{III}(C\_2O\_4)(bpaeOH)]\cdot 2H\_2O(2) and  $[(TPyA)(N_3)Fe^{III}O-Fe^{III}(N_3)(TPyA)](CIO_4)_2$  (3) (DHBN<sup>2-</sup> = 3,4-dihydroxybenzonitrilato,  $C_2O_4^{2-}$  = oxalato, TPyA = tris(2-pyridylmethyl)amine and bpa e-OH = *N*,*N*-bis(2-pyridylmethyl)-2-aminoethanol). The complexes 1 and 2 display symmetrical structures, while 3 shows an unsymmetrical one. Moreover, as DHBN<sup>2-</sup> and  $C_2O_4^{2-}$  are coordinated in 1 and 2, respectively, the TPyA and bpaeOH ligands are bound as tridentate ligands, not tetradentate ones.

#### 2. Experimental

#### 2.1. General procedures

All chemicals used in the synthesis were of reagent grade and used without further purification. Tris(2-pyridylmethyl)amine (TPyA) and *N*,*N*-bis(2-pyridylmethyl)-2-aminoethanol (bpaeOH) were prepared according to literature procedures [7]. UV–Vis absorption spectra were recorded with a SCINCO S-2100 spectro-





<sup>\*</sup> Corresponding author. Tel.: +82 53 9505906; fax: +82 53 9505899. *E-mail address:* minks@knu.ac.kr (K.S. Min).

<sup>0277-5387/\$ -</sup> see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2011.11.018

photometer. Infrared spectra were recorded with a Thermo Fisher Scientific IR200 spectrophotometer ( $\pm 1 \text{ cm}^{-1}$ ) using KBr disks. Elemental analyses were carried out using a Fissons/Carlo Erba EA1108 instrument. Magnetic susceptibilities were measured in an applied field of 5000 Oe between 5 or 10 and 300 K on a Quantum Design MPMS superconducting quantum interference device (SQUID) magnetometer. Diamagnetic corrections were made [545.5 (1), 426.5 (2) and 534.8  $\times 10^{-6}$  (3) emu/mol] by using Pascal's constants.

#### 2.2. Preparation of [(TPyA)(DHBN)Fe<sup>III</sup>OFe<sup>III</sup>(TPyA)(DHBN)]·2H<sub>2</sub>O (1)

To a methanol solution (30 mL) of Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O (139 mg, 0.344 mmol) was added a methanol solution (10 mL) of TPyA (100 mg, 0.344 mmol) and a methanol solution of 3,4dihvdroxybenzonitrile (H<sub>2</sub>DHBN, 47 mg, 0.344 mmol). The color of the solution turned dark red. Triethvlamine (0.10 mL 0.688 mmol) was added to the mixture for neutralization, which gave rise to a clear purple solution that was heated to reflux for 30 min. After hot-filtration, the solution was allowed to stand at room temperature for 2 or 3 days, whereupon a dark purple crystalline solid formed which was collected by filtration and washed with methanol and dried in air. Yield: 130 mg (75%). Single crystals suitable for Xray crystallography were obtained from a mixture solution (MeOH/H<sub>2</sub>O) by slow evaporation at room temperature. Anal. Calc. for C<sub>50</sub>H<sub>46</sub>Fe<sub>2</sub>N<sub>10</sub>O<sub>7</sub>: C, 59.42; H, 4.59; N, 13.86. Found: C, 59.10; H, 4.51; N, 14.16%. FT-IR (KBr, cm<sup>-1</sup>): 3406, 3063, 2919, 2848, 2201, 1605, 1438, 1153, 810, 769.

### 2.3. Preparation of $[(bpaeOH)(C_2O_4)Fe^{III}OFe^{III}(C_2O_4)(bpaeOH)] \cdot 2H_2O$ (2)

To a methanol solution (10 mL) of  $Fe(BF_4)_2 \cdot 6H_2O$  (70 mg, 0.21 mmol) was added a methanol solution (10 mL) of bpaeOH (50 mg, 0.21 mmol) and a MeOH/H<sub>2</sub>O solution (10 mL, 3:2, v/v) of Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub> (24 mg, 0.10 mmol). The mixture was heated to reflux for 1 h and the color turned yellow-brownish. After hot-filtration, the solution was allowed to stand at room temperature for several days, whereupon yellow-brownish crystals formed which were collected by filtration, washed with water and methanol, and dried in air. Yield: 24 mg (28%). *Anal.* Calc. for C<sub>32</sub>H<sub>38</sub>Fe<sub>2</sub>N<sub>6</sub>O<sub>13</sub>: C, 46.48; H, 4.64; N, 10.17. Found: C, 46.08; H, 4.61; N, 10.04%. FT-IR (KBr, cm<sup>-1</sup>): 3515, 3468, 3084, 2966, 1681, 1664, 1607, 1382, 1258, 815, 780.

#### 2.4. Preparation of $[(TPyA)(N_3)Fe^{III}OFe^{III}(N_3)(TPyA)](ClO_4)_2$ (3)

To a methanol solution (6 mL) of  $Fe(ClO_4)_2 \cdot 6H_2O$  (44 mg, 0.17 mmol) was added a methanol solution (6 mL) of TPyA (50 mg, 0.17 mmol) and a methanol solution (6 mL) of NaN<sub>3</sub> (22 mg, 0.344 mmol). The mixture was stirred for 10 min and the color turned dark red. After a filtration, the solution was allowed to stand at room temperature for 2 or 3 days, whereupon dark red-dish-brown crystals formed which were collected by filtration, washed with methanol and dried in air. Yield: 36 mg (43%). *Anal.* Calc. for C<sub>36</sub>H<sub>36</sub>Cl<sub>2</sub>Fe<sub>2</sub>N<sub>14</sub>O<sub>9</sub>: C, 43.62; H, 3.66; N, 19.78. Found: C, 43.78; H, 3.64; N, 19.90%. FT-IR (KBr, cm<sup>-1</sup>): 3084, 2926, 2054, 1606, 1441, 1094, 1024, 808, 767, 622.

#### 2.5. X-ray crystallographic data collection and refinement

Single crystals of **1** and **3** were mounted on a Bruker SMART APEX CCD-based diffractometer (Korea Basic Science Institute, Chonju Branch). X-ray data for **1** and **3** were collected at 200(2) K, using Mo K $\alpha$  radiation ( $\lambda$  = 0.71073 Å, graphite mono-chromator). The raw data were processed to give structure factors

using the Bruker SAINT program and corrected for Lorentz and polarization effects [8]. X-ray diffraction data of 2 were collected at 293(2) K on an ADSC Quantum 210 detector at Beamline 6B1MXI of the Pohang Light Source. The basic data file was prepared by using the program HKL2000 [9]. The reflections were successfully indexed by the automated indexing routine of the DENZO program [9]. The intensity data of 1 were corrected for absorption using the sadabs program with multi-scan data  $(T_{\min}/T_{\max} = 0.785)$  [10]. The crystal structures were solved by direct methods for 1 and 2 and by Patterson methods for 3 [11], and refined by full-matrix least-squares refinement using the SHELXL97 computer program [12]. The positions of all non-hydrogen atoms were refined with anisotropic displacement factors. All hydrogen atoms were placed using a riding model, and their positions were constrained relative to their parent atoms using the appropriate HFIX command in SHELXL97, except for the water molecules in **1** and **2**. The aqua hydrogen atoms in **2** were located from the difference Fourier maps and refined with isotropic displacement factors, however, the aqua hydrogen atoms in **1** could not be located due to a large thermal disorder. The crystallographic data and the results of the refinements are summarized in Table 1.

#### 3. Results and discussion

#### 3.1. Synthesis and characterization

The reaction of one equivalent of tris(2-pyridylmethyl)amine (TPyA) and 1 equiv of 3,4-dihydroxybenzonitrile (H<sub>2</sub>DHBN) with Fe(-NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O in MeOH under aerobic conditions affords air stable [(TPyA)(DHBN)Fe<sup>III</sup>OFe<sup>III</sup>(TPyA)(DHBN)]·2H<sub>2</sub>O (**1**) in good yield (75%). The IR spectrum of **1** in KBr has peaks characteristic of coordinated TPyA and DHBN, as well as  $v_{OH}$  absorptions characteristic of H<sub>2</sub>O as a lattice solvent [13]. A strong absorption at 2201 cm<sup>-1</sup> was assigned to the cyano group of coordinated DHBN<sup>2–</sup>. Bands for C–H of the TPyA ligand appeared at 3063, 2919 and 2848 cm<sup>-1</sup>. The reaction of one equivalent of *N*,*N*-bis(2-pyridylmethyl)-2-aminoethanol (bpaeOH) and 1 equiv of Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub> with Fe(BF<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O in MeOH under aerobic conditions affords air stable [(bpaeOH)(C<sub>2</sub>O<sub>4</sub>)Fe<sup>III</sup>OFe<sup>III</sup>(C<sub>2</sub>O<sub>4</sub>)(bpae-

 Table 1

 Crystallographic data and structure refinement for 1.2 and 3.

| Compound                         | 1                                                                              | 2                           | 3                               |
|----------------------------------|--------------------------------------------------------------------------------|-----------------------------|---------------------------------|
| Empirical formula                | C <sub>50</sub> H <sub>46</sub> Fe <sub>2</sub> N <sub>10</sub> O <sub>7</sub> | $C_{32}H_{38}Fe_2N_6O_{13}$ | $C_{36}H_{36}Cl_2Fe_2N_{14}O_9$ |
| Formula weight                   | 1010.67                                                                        | 826.38                      | 991.39                          |
| Crystal system                   | monoclinic                                                                     | monoclinic                  | triclinic                       |
| Space group                      | C2/c                                                                           | $P2_1/n$                    | ΡĪ                              |
| a (Å)                            | 20.900(2)                                                                      | 10.644(1)                   | 13.6127(6)                      |
| b (Å)                            | 19.855(2)                                                                      | 9.066(1)                    | 13.9013(6)                      |
| c (Å)                            | 12.9696(14)                                                                    | 18.175(2)                   | 14.0201(6)                      |
| α(°)                             |                                                                                |                             | 87.591(1)                       |
| β (°)                            | 115.614(2)                                                                     | 94.513(7)                   | 69.106(1)                       |
| γ (°)                            |                                                                                |                             | 60.704(1)                       |
| V (Å <sup>3</sup> )              | 4853.2(9)                                                                      | 1748.4(3)                   | 2132.85(16)                     |
| Ζ                                | 4                                                                              | 2                           | 2                               |
| $D_{\rm calc}~({\rm g~cm^{-3}})$ | 1.383                                                                          | 1.570                       | 1.544                           |
| λ (Å)                            | 0.71073                                                                        | 0.90000                     | 0.71073                         |
| T (K)                            | 200(2)                                                                         | 293(2)                      | 200(2)                          |
| $\mu$ (mm $^{-1}$ )              | 0.660                                                                          | 0.905                       | 0.876                           |
| F(000)                           | 2096                                                                           | 856                         | 1016                            |
| Collected                        | 17691                                                                          | 3920                        | 15828                           |
| Unique                           | 6013                                                                           | 3920                        | 10408                           |
| Observed                         | 1647                                                                           | 2456                        | 5195                            |
| Parameters                       | 313                                                                            | 253                         | 544                             |
| GOF                              | 0.762                                                                          | 1.020                       | 1.015                           |
| $R_1^a$ (4 $\sigma$ data)        | 0.0724                                                                         | 0.0819                      | 0.0795                          |
| $wR_2^{b}$ (4 $\sigma$ data)     | 0.1745                                                                         | 0.1937                      | 0.2095                          |

<sup>a</sup>  $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|.$ 

<sup>b</sup>  $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}.$ 

Download English Version:

## https://daneshyari.com/en/article/10578325

Download Persian Version:

https://daneshyari.com/article/10578325

Daneshyari.com