

Available online at www.sciencedirect.com

Polyhedron 24 (2005) 1101-1107

Mixed ligand chelates of copper(II) with substituted diamines

Mohammad Afzaal^a, Elizabeth Flynn^b, Mohammad A. Malik^{a,1}, Paul O'Brien^{a,*}, Majid Motevalli^b

^a School of Materials and School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK ^b Department of Chemistry, Queen Mary University of London, Mile End Road, London El 4NS, UK

> Received 9 February 2005; accepted 1 April 2005 Available online 17 May 2005

Abstract

The copper complexes, oxalato(N,N,N'N')-tetramethylethylenediamine)copper(II) tetrahydrate (1), oxalato(N,N,N')-trimethylethylenediamine)copper(II) (3), have been synthesized and structurally characterised. Compounds 1 and 2 share a common zig-zag polymeric structure in which the oxalates are bridging as well as chelating. The copper is in a distorted octahedral position in both compounds. Compound 3 is monomeric and the oxalate is chelating only. The copper is in a distorted square planar position. Diffuse reflectance spectroscopy and ESR spectroscopy showed a clear difference between the two types of structures.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Copper; Oxalato; Tetramethylenediamine; Synthesis; Structure; Mixed ligand; ESR; Substituted diamines; X-ray

1. Introduction

The mixed ligand systems based on copper(II) salts form stable complexes of approximately square planar geometry and such complexes have been extensively studied [1]. Copper(II) ion forms stable ternary complexes with π -acceptor ligands such as 2,2'-bipyridyl (bipy) ligands and oxalate (C₂O₄²⁻) ions [2,3]. It has been shown that this complex is subject to polymorphism indicated by colour changes as well as changes in the electronic and ESR spectra.

Stone et al. [2] have prepared $[Cu(bipy)(O_4C_2)] \cdot 2H_2O$ which turned green and then finally dehydrated to give an anhydrous compound; $[Cu(bipy)_2] [Cu(O_4C_2)_2]$. Sigel et al. [1] and Hathaway and co-workers [3] have pre-

¹ Tel.: +161 275 1141; fax: +161 275 4598.

pared a blue-green anhydrous mixed ligand complex by a different method but no solid-state reactivity was observed. There have also been several studies of mixed ligand Cu(II) bipy complexes with carboxylic or aminoacids [4–7].

The copper chelates with diamines have proven to be active catalysts for the hydrolysis of phosphate esters [8]. The stability of 1:1 copper(II) chelate complexes is controlled by the tendency to disproportionate to 2:1 chelate and copper hydroxide. Since the copper(II) chelate complexes are square planar, the substitution of alkyl groups in place of the amino groups should help the disproportionation reaction by steric repulsion. It has been reported that the soluble 1:1 copper(II) chelate complexes of TMEDA and N,N'-dimethylethylenediamine (DMEDA) did not disproportionate in aqueous solutions at pH 7 and above, but 1:1 copper(II) chelate complex of ethylenediamine was not stable, and did convert to 2:1 chelate complex and copper hydroxide [9].

However, Marjit and Sharma [10] have reported that 1:1 complexes are not only difficult to isolate but if

^{*} Corresponding author. Tel.: +44 161 275 4652; fax: +44 161 275 4616.

E-mail addresses: azad.malik@man.ac.uk (M.A. Malik), paul. obrien@manchester.ac.uk (P. O'Brien).

^{0277-5387/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2005.04.002

isolated, their stability was low in the reaction medium. The copper(II) nitrate–TMEDA 1:1 complex became turbid in aqueous solution due to disproportionation reaction and form a more stable 1:2 complex. Previously, it has been shown that dimers of the chelate complexes tend to show negligible catalytic activity [11]. In order to better define the coordination chemistry of substituted diamines with copper(II), mixed ligand complexes of oxalate and diamines have been synthesized and discussed.

2. Experimental

 $CuSO_4$, $K_2(C_2O_4)$ and diamines were used as purchased from Aldrich company Limited. $Cu(C_2O_4) \cdot 1/2H_2O$ was prepared according to the reported method [12].

2.1. Preparation of Cu(TMEDA) oxalate $\cdot 4H_2O(1)$

To a stirred solution of TMEDA (0.48 ml, 3.2 mmol) in water (2 ml), finely powdered Cu(C₂O₄)·1/2H₂O (0.25 g, 1.6 mmol) was added. Unreacted copper oxalate was removed by filtration. Ethanol (2 ml) was added to the filtrate and the solution was allowed to stand. After several days, a mixture of colourless and blue crystals formed. The blue crystals of 1 were separated for analysis; m.p. 232 °C; yield, 79%. *Microanal*. Calc. for CuC₈-H₂₂O₈N₂: C, 28.3, H, 7.1, N, 8.2. Found: C, 28.3, H, 7.3, N, 8.1%. IR bands: 3407 (s), 2926 (m), 1673 (s),

Table 1

Crystal data and structural refinement parameters

1046 (m), 520 (m). UV/Vis bands: $\lambda_{max} = 15.0 \times 10^3 \text{ cm}^{-1}$ with a shoulder at $9.8 \times 10^3 \text{ cm}^{-1}$.

2.2. Preparation of Cu(TriMPDA)oxalate (2)

To a stirred solution of N, N, N'-trimethyl-1,3-propanediamine (0.37 ml, 1.6 mmol) in water (4 ml) was added Cu(C₂O₄)·1/2H₂O (0.25 g, 6.4 mmol). The excess copper oxalate was removed by filtration. The addition of ethanol immediately precipitated a blue solid which was dissolved in water (2 ml) and allowed to stand for crystallization. After several days blue crystals of **2** were formed which were separated by filtration, dried, m.p. 240 °C; yield, 68%. *Microanal.* Calc. for CuC₈-H₁₆O₄N₂: C, 35.9, H, 6.0, N, 10.5. Found: C, 35.8, H, 5.8, N, 10.6%. IR bands: 3443 (m), 2930 (m), 1619 (s), 1044 (m), 495 (m). UV/Vis bands: $\lambda_{max} = 13.6 \times 10^3 \text{ cm}^{-1}$.

2.3. Preparation of Cu(TriMEDA)oxalate (3)

To a stirred solution of Cu(C₂O₄)·1/2H₂O (0.5 g, 3.2 mmol) in ethanol (5 ml) and water (5 ml), was added N, N, N'-trimethylethylenediamine (0.81 ml, 6.4 mmol). The resulting solution was allowed to stand. Blue/violet crystals of **3** were grown after a few days; m.p. >240 °C; yield, 77%. *Microanal*. Calc. for CuC₇H₁₄O₄N₂: C, 33.1, H, 5.5, N, 11.0. Found: C, 33.2, H, 5.4, N, 11.4%. IR bands: 3424 (m), 2927 (m), 1619 (s), 1055 (m), 790 (s), 490 (m). UV bands: $\lambda_{max} = 18.4 \times 10^3 \text{ cm}^{-1}$.

Compound	$C_{8}H_{24}N_{2}CuO_{8}$ (1)	$C_8H_{16}N_2CuO_4$ (2)	$C_{7}H_{14}N_{2}CuO_{4}$ (3)
	339.83	267.77	253.74
Temperature (K)	298(2)	298(2)	298(2)
Crystal system	triclinic	orthorhombic	orthorhombic
Space group	$P\overline{1}$	Pbca	$Pca2_1$
a (Å)	7.362(2)	11.368(3)	10.994(3)
b (Å)	8.891(8)	9.844(6)	8.557(10)
c (Å)	11.841(4)	18.639(7)	10.752(3)
α (°)	101.44(6)	90	90
β (°)	98.08(3)	90	90
γ (°)	92.53(8)	90	90
Volume ($Å^3$)	750.0(7)	2085(2)	1011.5(4)
Ζ	2	8	4
$d_{\rm calc} ({\rm Mg/m}^3)$	1.505	1.705	1.666
Absorption coefficient (mm^{-1})	1.490	2.091	2.151
Index ranges	$-8\leqslant h\leqslant 8$	$-4 \leqslant h \leqslant 13$	$-3 \leqslant h \leqslant 13$
	$0 \leqslant k \leqslant 10$	$-11 \leqslant k \leqslant 0$	$-10 \leqslant k \leqslant 1$
	$-14 \leqslant I \leqslant 13$	$-7 \leqslant I \leqslant 22$	$-6 \leqslant I \leqslant 12$
Collected/unique	2887/2621	1875/1823	969/945
Data/restraints/parameters	2621/0/214	1823/0/144	945/2/134
Goodness-of-fit on F^2	1.078	0.940	1.020
$R_1, wR_2 [I > 2\sigma(I)]$	0.0565, 0.1696	0.0321, 0.0936	0.0231, 0.0656
R_1 , wR_2 (all data)	0.0605, 0.1720	0.0407, 0.0969	0.0277, 0.067
Differential peak, hole (e $Å^{-3}$)	1.639, -1.285	0.469, -0.638	0.222, -0.359

Download English Version:

https://daneshyari.com/en/article/10578454

Download Persian Version:

https://daneshyari.com/article/10578454

Daneshyari.com