

Available online at www.sciencedirect.com

Polyhedron 24 (2005) 173-180

Synthesis and structural characterization of (pyrazolyl)alkenyl Fischer carbene complexes of chromium and tungsten

Kai-Chun Gu^a, Jin-Zhu Chen^a, Zhao-Yan Zheng^a, Si-Zhong Wu^a, Xiao-Wei Wu^a, Xiu-Wen Han^b, Zheng-Kun Yu^{a,*}

^a Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P.R. China ^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P.R. China

> Received 11 October 2004; accepted 3 November 2004 Available online 18 December 2004

Abstract

Michael addition of substituted pyrazoles 2 to 1-alkynyl Fischer carbene complexes $(CO)_5M=C(OEt)(C=CPh)$ (1) (a, M = Cr and b M = W) afforded (pyrazolyl)alkenyl Fischer carbene complexes $(CO)_5M=C(OEt)(CH=C(R^1R^2R^3pz)Ph)$ ($R^1R^2R^3pz$ = pyrazolyl) 3 (M = Cr) and 4 (M = W), respectively, with an exclusive (*E*)-configuration in mild to excellent yields. The reaction of 1a and 3,5-dimethylpyrazole (2b) was monitored to demonstrate the formation and decomposition of complex 3b by ¹H NMR measurements in CDCl₃ at 23 °C. Complexes 3 and 4 were characterized with ¹H, ¹³C{¹H} NMR, IR spectroscopies and elemental analysis. When the substituted pyrazoles were 3-methylpyrazole (2a) and 3,5-di-*tert*-butylpyrazole (2d), molecular structures of the corresponding (pyrazolyl)alkenyl Fischer carbene complexes 3a and 4d were characterized by X-ray crystallographic study. © 2004 Elsevier Ltd. All rights reserved.

Keywords: Fischer carbene; Pyrazole; Michael addition; Chromium; Tungsten

1. Introduction

Fischer carbene complexes were first synthesized by Fischer and Maasböl in 1964 [1,2] and have been paid much attention in the last two decades because they can be rather readily prepared and manipulated to demonstrate diverse reactivity in organic synthesis [3]. Transformations from alkynyl carbene to alkenyl carbene complexes have been extensively investigated. Michael addition of dimethylamine to Fischer alkynylcarbene complexes was reported by Fischer and Kreissl [4] as early as 1972, followed by several other groups [5]. Michael-type addition of amines or N–H bond-contain-

* Corresponding author. Tel./fax: +86 411 8437 9227. *E-mail address:* zkyu@dicp.ac.cn (Z.-K. Yu). ing compounds to α,β -unsaturated Fischer carbene complexes to form β -aminovinyl-substituted products has been considered a useful methodology for certain preparative organic synthesis because the resultant Michael-type adducts are usually reactive intermediates [6-18]. A rich chemistry of pyrazoles [19] and pyrazolato ligands [20-22] has been evolved since pyrazoles were first prepared in 1968 [23], due to the presence of pyrazolyl-containing compounds in nature and potential bioactivity of pyrazole derivatives as well as their good coordination ability as ligands. Pyrazole contains a reactive N-H bond which can be easily deprotonated to proceed a lot of reactions. However, up to date no β-pyrazolyl subsitituted alkenyl Fischer carbene complexes have been synthesized, although 1-methoxy-1-(5-pyrazole) Fischer carbene complexes were reportedly generated in the reactions of 1-alkynyl Fischer carbene

^{0277-5387/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2004.11.012

complexes with Me₃SiCHN₂ [24a] and (CO)₅W-C(OEt)(CH=C(C₃H₃N₂)Ph) was detected by UV spectroscopy [24b]. Herein, we report the synthesis of (pyrazolyl)alkenyl Fischer carbene complexes **3** and **4** by the reactions of substituted pyrazoles **2** with 1-alky-nyl Fischer carbene complexes **1a**,**b** (**a**, M = Cr; **b**, M = W) under mild conditions, as well as their structural characterization.

2. Results and discussion

2.1. Synthesis of (pyrazolyl)alkenyl carbene complexes 3 and 4

Treatment of the 1-alkynyl Fischer carbene complexes **1a** and **1b** with an equivalent amount of substituted pyrazole in dichloromethane at ambient temperature afforded (pyrazolyl)alkenyl Fischer carbene complexes **3** and **4** in mild to excellent yields (Eq. (1)). The reaction temperature was elevated to 38 °C due to the poor solubility of 3,5-di-*tert*-butylpyrazole and 3,5-di-phenylpyrazole in CH₂Cl₂. 3-Methylpyrazole exhibited very low reactivity to both complexes **1a** and **1b** and only 32.2% and 17.6% yields of the desired products were achieved over a period of 77–85 h for **1a** and **1b**, respectively.

^a Containing small amounts of decomposition products.

In the other cases, the tungsten carbene complex **1b** demonstrated higher reactivity (shorter reaction time) to the investigated substituted pyrazoles than its chromium analogue, leading to higher yields for the tungsten products (80.5–99.6%) and lower isolated yields for their chromium analogues (60.5–88.5%). It was observed that the chromium products were subject to decomposition on silica gel when the crude products were purified by column chromatography.

It is noteworthy that complex **4b** was obtained in 99.6% isolated yield while its chromium analogue, i.e., complex **3b** underwent decomposition under mild conditions to form some unidentified products when 3,5-dimethyl pyrazole was used. In order to understand the

behavior of complex 3b, Fischer carbene complex 1a was treated with an equivalent amount of 3,5-dimethyl pyrazole (2b) in CDCl₃ in a 5-mL NMR tube at ambient temperature and the reaction was monitored by ¹H NMR measurements over a period of ten days (Scheme 1). The ¹H NMR measurements revealed that the reaction exclusively proceeded to form 3b and the reaction was completed in 24 h at ambient temperature. It was noticed that the product, i.e., 3b, gradually decomposed when the reaction solution was kept at ambient temperature for a longer time (e.g., 10 days). It was also observed that the reaction of 1a with an excess of the pyrazole (2.0 equiv.) in CDCl₃ at ambient temperature did not lead to any formation of the de-ethoxy product, i.e., the 2,4-dipyrazolyl alkenylcarbene complex. Due to its decomposition at ambient temperature, the full characterization data for complex 3b could not be collected, but its NMR data was tentatively assigned.

2.2. Spectroscopy of (pyrazolyl)alkenyl carbene complexes 3 and 4

The strong bands in the region 2069–1902 cm⁻¹ of the IR spectra are characteristic of the typical patterns expected for a M(CO)₅ moiety in Fischer carbene complexes. The proton resonances of HC=C(R¹R²R³pz)Ph in complexes **3** and **4** in CDCl₃ are shown in the region 8.20–7.31 ppm as singlets and those of the alkenyl complexes of chromium, **3**, are slightly shifted downfield as compared with their tungsten analogues. The ¹³C resonances of the carbene carbons, i.e., Cr=C in complexes **3** are at 331.4–338.4 ppm and those of W=C in complexes **4** are at 310.5–304.6 ppm, while the ¹³C NMR signals of typical β-aminoalkenyl Fischer carbene complexes exhibiting some conjugation between the metal carbene M=C and the alkenyl moiety are in the region \sim 270–290 ppm [7,10], and those of metal carbene M=C in (OC)₅M=

Scheme 1. Formation and decomposition of **3b** from the reaction of **1a** and 3,5-dimethylpyrazole (**2b**) monitored by ¹H NMR measurements in CDCl₃ at 23 $^{\circ}$ C.

Download English Version:

https://daneshyari.com/en/article/10578819

Download Persian Version:

https://daneshyari.com/article/10578819

Daneshyari.com