FLSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Perindopril and ramipril phosphonate analogues as a new class of angiotensin converting enzyme inhibitors

Catherine Gomez ^a, Sabine Berteina-Raboin ^a, Guillaume De Nanteuil ^b, Gérald Guillaumet ^{a,*}

^a Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France ^b Institut de Recherche Servier, 125 chemin de Ronde, 78290 Croissy sur Seine, France

ARTICLE INFO

Article history:
Received 14 March 2013
Revised 25 June 2013
Accepted 16 August 2013
Available online 11 September 2013

Keywords:
Phosphonate
Inhibitors
Angiotensin converting enzyme
Hypertension

ABSTRACT

A series of phosphonate analogues related to perindopril and ramipril were prepared and tested to estimate their ability to inhibit angiotensin converting enzyme. These new synthesized compounds were active ACE inhibitors with a promising activity.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

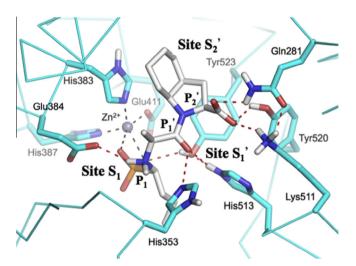
The converting-enzymes such as endothelin converting enzyme (ECE), angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP), meanly localised in the endothelium, stand for an interesting target in the drugs development against the cardiovascular pathologies. The well-known diseases involving the most risk factors are arterial hypertension, hypercholesteremia, congestive heart failure, hypertriglyceridemia, tabagism and diabetes. Since 80's, syntheses of compounds acting against these diseases were developed. More particularly against hypertension, the choice has been focused on regulation of enzymes ECE, ACE, NEP having effects on blood pressure. Among these three converting enzymes, our studies have been targeted about angiotensin converting enzyme inhibitors. In previous years, a number of effective antihypertensive drugs have been discovered by the pharmaceutical industry like the Captopril (Lopril) and several of its variants.

2. Results and discussion

2.1. Determination of targeted structure

At the top ACE is an exopeptidase membrane associated to a zinc atom.⁵ This zinc metalloprotease ACE bonds its catalytic site via the zinc atom both to a water molecule and to angiotensin I by the carbonyl group then cleaves the decapeptide into an octapeptide, the angiotensin II. So the accumulation of the potent vasoconstricting octapeptide and the hydrolysis of vasodilator

bradykinin by ACE are both responsible to increase blood pressure. To block this effect, angiotensin-converting-enzyme inhibitors (ACEI) are studied and represent an important part in hypertension treatment in acting in hemodynamic regulation.


Among ACE selective inhibitors known in the literature, the discovery of captopril has played an important part in pharmacology in 1977. Indeed, it decreased the arterial pressure in stopping the angiotensin II biosynthesis. This pseudo-peptide contains pyrrolidine, carboxylic acid and thiol functionalities which contribute to have a good affinity toward ACE by binding the Zn atom. Furthermore structure modifications such as in lisinopril or perindopril increase inhibition with an IC₅₀ of 0.1 nM (human blood serum ACE) and 1.5 nM, respectively. (Fig. 1).

Other compounds as ramipril,⁹ enalapril¹⁰ and quinapril¹¹ have structural likenesses with the previous series that confer them a potent activity against ACE.

As shown with previous literature models to be specific to catalytic site, inhibitor structures should contain particular functions in specific positions. First, they must be coordinated to a metal by one or several atoms. The zinc-chelating group can be a thiol, ¹² a carboxylic acid, ^{6,7} a hydroxamic acid, ¹³ a phosphonic acid ¹⁴ or a phosphoramidic acid. ¹⁵ As indicated in Figure 2 every special position was filled by a specific group in the active site. ¹⁶ S₁ subsite constitute hydrophobic domain and could efficiently be occupied by alkyl or aryl moieties in position P₁ to interact with Zn²⁺ ion located in the enzyme's active site. The S₁' site accepts a wide variety of residues in position P₁' like (t)-alanine residue whereas S₂' binding site prefers aromatic amino acids in position P₂'. ¹⁷ By analogy with active inhibitors structures in the literature and to respect constraints, the below compounds have been proposed to create new ACEI with a defined configuration.

^{*} Corresponding author. Tel.: +33 2 35 52 24 63; fax: +33 2 35 52 29 71. E-mail address: gerald.guillaumet@univ-orleans.fr (G. Guillaumet).

Figure 1. ACE inhibitors known in the literature.

Figure 2. Expected interactions of targeted structure with the enzyme tACE's active site (PDB code 1086).¹⁸

The present work deals with introduce news ACE inhibitors containing zinc-chelating groups such as phosphonates, improving the inhibitor–enzyme coordination, to take the place of thiol or ethyl ester group. In producing isosteres of previous active compounds, physical, chemical and biological properties (greater selectivity, less side effects, decreased toxicity, increased stability and affinity for enzyme) should be improved. Herein we report the results of our studies.

2.2. Synthesis

The synthetic route developed for the preparation of these inhibitors is shown in Scheme 1. The condensation of the commercially available protected (L)-alanine with 3-phenylpropionaldehyde in dichloromethane under microwaves irradiation gave imine intermediate 1. The desired substituted diethyl α -aminophosphonate 2 was successfully obtained by optimization of De Lombaert strategy. 19 Use of the Lewis acid BF₃·Et₂O promoted triethylphosphite addition according to Arbusov mechanism. Moreover, microwaves activation allowed to get the desired compound in good yield. An optimisation of several parameters of the reaction (catalyst quantities, time, temperature and concentration) has been necessary. Indeed the best conditions were two equivalents of lewis acid BF3·Et2O, in short time (15 min) at 120 °C and in a concentration of 0.3 M to get compound 2 such as two diastereoisomers in 78% yield after purification. These two compounds have been obtained in 6:4 ratio by ¹H NMR then have been separated in the next step.

The by-product **3** often observed could come from intermediate hydrolysis after an isomerization reaction due to the forcing conditions of the phosphite addition. ¹⁰ Its formation was minimized when the mixture concentration was increased to 0.3 M.

The following debenzylation step has furnished the desired carboxylic acid α -aminophosphonate **4** under palladium catalysed hydrogenolysis. After separation of diastereoisomers by precipitation in a mixture of dichloromethane/diethylether, one pure isomer was isolated in 47% yield and confirmed by HPLC chiral. So

$$BnO \xrightarrow{NH_2} a \qquad BnO \xrightarrow{N} R \qquad b \qquad BnO \xrightarrow{H_2} R \qquad + H_2N \xrightarrow{R} R \qquad c$$

$$1, R = Ph \qquad 2, R = Ph \qquad 3, R = Ph \qquad 9, R = Me$$

$$4, R = Ph \qquad 5, R = Ph \qquad 6, R = Ph \qquad 11, R = Me \qquad 13, R = Me$$

Scheme 1. Synthetic pathway of ACE inhibitors. Reagents and conditions: (a) NEt₃, 3-phenylpropionaldehyde (R = Ph) or butyraldehyde (R = Me), Na₂SO₄, CH₂Cl₂; (b) triethylphosphite, BF₃.Et₂O, CH₂Cl₂; (c) H₂, Pd/C, EtOH; (d) (2S, 3aS, 7aS)-2-[(benzyloxy)carbonyl]perhydroindole, NEt₃, HOBt, DCC, DMF; (e) H₂, Pd/C, EtOH; (f) HCl aq.

Download English Version:

https://daneshyari.com/en/article/10582522

Download Persian Version:

https://daneshyari.com/article/10582522

<u>Daneshyari.com</u>