Accepted Manuscript

Discovery of novel series of 6-benzyl substituted 4-aminocarbonyl-1,4-diaze-pane-2,5-diones as human chymase inhibitors using structure-based drug design

Taisaku Tanaka, Hajime Sugawara, Hiroshi Maruoka, Seiichi Imajo, Tsuyoshi Muto

PII: S0968-0896(13)00418-5

DOI: http://dx.doi.org/10.1016/j.bmc.2013.04.079

Reference: BMC 10819

To appear in: Bioorganic & Medicinal Chemistry

Received Date: 22 March 2013 Revised Date: 26 April 2013 Accepted Date: 27 April 2013

Please cite this article as: Tanaka, T., Sugawara, H., Maruoka, H., Imajo, S., Muto, T., Discovery of novel series of 6-benzyl substituted 4-aminocarbonyl-1,4-diazepane-2,5-diones as human chymase inhibitors using structure-based drug design, *Bioorganic & Medicinal Chemistry* (2013), doi: http://dx.doi.org/10.1016/j.bmc.2013.04.079

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com

Discovery of novel series of 6-benzyl substituted 4-aminocarbonyl-1,4-diazepane-2,5-diones as human chymase inhibitors using structure-based drug design

Taisaku Tanaka*, Hajime Sugawara, Hiroshi Maruoka, Seiichi Imajo and Tsuyoshi Muto*

Asubio Pharma Co., Ltd., 6-4-3, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan

ARTICLE INFO

ABSTRACT

Article history:
Received
Received in revised form
Accepted

Available online

Keywords: Chymase inbibitor Atopic Dermatitis Amino acid derivatives

Heteroaromatic derivatives

A novel series of 6-benzyl substituted 4-aminocarbonyl-1,4-diazepane-2,5-diones were explored as human chymase inhibitors using structure-based drug design according to the X-ray cocrystal structure of chymase and compound 1. The optimization focused on the prime site led to the attainment of compounds that showed potent inhibitory activity, and among them, 18R shows a novel interaction mode.

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Chymase is a chymotrypsin-like serine protease stored in mast cell granules that hydrolyzes a variety of physiological substrates, including angiotensin L² It is known to play a role in the pathogenesis of atopic dermatitis; for example, it has been reported that an intradermal injection of chymase to mouse skin elicits edema as well as inflammatory cell accumulation, 3,4 and a correlation between a particular single nucleotide polymorphism of the chymase gene and incidence of atopic dermatitis has been observed.⁵⁻⁷ In a previous paper, ^{8,9} we reported on novel, orally active human chymase inhibitors with a 6-benzyl substituted 4aminocarbonyl-1,4-diazepane-2,5-dione demonstrated selectivity against other serine proteases. Oral administration of the representative compound SUN13834 reduced skin inflammation in NC/Nga mice 10 that spontaneously develop dermatitis under conventional conditions, 11,12 in addition to significantly decreasing the amount of scratching induced by DNFB challenge in the mouse model. 13 SUN13834 also showed promising results when tested on humans with atopic dermatitis. 14

In order to increase the chances of successfully launching our chymase inhibitor with lower dosage and/or different pharmacokinetic profile onto the market, a new class of the compound, which showed enhanced inhibitory activity and/or different physical property, was explored using a structure-based drug design approach. Heteroaromatic derivatives and amino acid derivatives were designed by referring to the cocrystal structure of chymase and compound 1 which is SUN13834 series compound (Figure 1). In this paper, the approach used in the design, in addition to the structure activity relationships, is described. In the course of our study, various derivatives were synthesized that showed potent inhibitory activity, comparable to

heteroaromatic derivatives

CI HN NO Ar COOH
O HN NH2

amino acid derivatives

CI HN NO Ar COOH
hetero

The state of the s

Figure 1. Approach to obtaining new inhibitors

SUN13834.

^{*}Corresponding author. Tel.: +81-78-306-5307; fax: +81-78-306-5971; e-mail: tanaka.taisaku.fu@asubio.co.jp (T.Tanaka), Tel.: +81-78-306-5338; fax: +81-78-306-5971; e-mail: muto.tsuyoshi.ba@asubio.co.jp (T.Muto)

Download English Version:

https://daneshyari.com/en/article/10582556

Download Persian Version:

https://daneshyari.com/article/10582556

<u>Daneshyari.com</u>