

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Design and synthesis of silicon-containing steroid sulfatase inhibitors possessing pro-estrogen antagonistic character

Daisuke Kajita ^{a,†}, Masaharu Nakamura ^{a,*,†}, Yotaro Matsumoto ^b, Makoto Makishima ^c, Yuichi Hashimoto ^a

- ^a Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- ^b Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
- ^c Department of Biochemistry, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan

ARTICLE INFO

Article history:
Received 22 January 2014
Revised 10 February 2014
Accepted 10 February 2014
Available online 28 February 2014

Keywords: Steroid sulfatase inhibitor Estrogen antagonist Silicon Diphenylmethane Breast cancer

ABSTRACT

Steroid sulfatase (STS) is a potential target for treatment of postmenopausal hormone-dependent breast cancer. Several steroidal STS inhibitors have been reported, but steroidal compounds are difficult to optimize and may interact with other targets. On the other hand, we have shown that diphenylmethane (DPM) derivatives act as estrogen receptor (ER) agonists and antagonists. Here, we aimed to design and synthesize non-steroidal DPM-type STS inhibitors that would also serve as pro-estrogen antagonists, releasing a metabolite with ER α -antagonistic activity upon hydrolysis by STS. We synthesized a series of compounds and evaluated their biological activities by means of STS-inhibitory activity assay and ER reporter gene assay. Among them, silicon-containing compound **16a** showed strong STS-inhibitory activity (IC $_{50} = 0.17 \mu$ M). Further, its putative metabolite (**12a**) exhibited potent ER α -antagonistic activity (IC $_{50} = 29.7 n$ M).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Breast cancer is one of the most common types of cancer in women; 70-80% of these cancers are hormone-dependent¹ and more than 70% express high levels of estrogen receptor alpha (ERα).² Endocrine therapies are standard treatments for hormone-dependent breast cancer, based on the use of an antiestrogen or estrogen antagonist to block production or utilization of estrogens or to inhibit their functional effects.^{3,4} In premenopausal women, estrogens promoting breast tumor growth are mainly synthesized in the ovaries, and therefore, a luteinizing hormonereleasing hormone (LH-RH) agonist⁵ that suppresses the function of pituitary hormone to promote estrogen synthesis in the ovaries may be particularly useful. On the other hand, in postmenopausal women, whose ovarian function is lowered, estrogens are mainly synthesized from androgen secreted from the adrenal glands. Since the conversion of androgen to estrogen is performed by aromatase, aromatase inhibitors are often used to treat postmenopausal hormone-dependent breast cancer. However, the therapeutic effect of aromatase inhibitors is not always sufficient, and drugs with another mechanism of action may also be required.

In addition to aromatase, steroid sulfatase (STS) is involved in estrogen synthesis in breast cancer. STS catalyzes the hydrolysis of steroid-3-sulfates to 3-hydroxysteroids. Since the systemic circulating precursors for estrogens and androgens are predominantly sulfates such as dehydroepiandrosterone sulfate (DHEAS) and estrone sulfate (E1S), STS plays a crucial role in production of androgens and estrogens [estrone (E1) and estradiol (E2)].6 Further, the activity of STS in cancer tissue is several hundred times higher than that of aromatase.⁷ Since STS produces estrogens through a different route from aromatase, it is expected that simultaneous administration of STS inhibitors and aromatase inhibitors might show an additive or synergistic anti-tumor effect. Therefore, STS is considered to be a promising target for anticancer drug development.⁸ Several STS inhibitors have been reported (Fig. 1). Among them, estrone 3-O-sulfamate (EMATE) was evaluated in a clinical trial. However, it was found that metabolites of EMATE exhibit potent estrogenic activity9, and so might promote tumor growth. Therefore, the development of EMATE was discontinued. Since steroidal compounds are difficult to optimize, and they or their metabolites might also act on other targets, non-steroidal STS inhibitors have attracted attention. For example, STX64, which has a coumarin skeleton, shows potent STS-inhibitory activity and a clinical trial has been carried out.¹⁰

The non-steroidal diphenylmethane (DPM) derivative **1** has also been reported as an STS inhibitor (Fig. 2).¹¹ However, its putative metabolite **1m** has ER-agonistic activity.¹² Therefore, compound

^{*} Corresponding author. Tel.: +81 3 5841 7847; fax: +81 3 5841 8495. *E-mail address*: nakamura-nk@iam.u-tokyo.ac.jp (M. Nakamura).

[†] The first two authors contributed equally to this work.

Figure 1. Structures of EMATE (estrone 3-0-sulfamate) and STX64

Figure 2. Structures of diphenylmethane (DPM) derivative ${\bf 1}$ and its putative metabolite ${\bf 1m}$.

1 was considered unsuitable for use as a therapeutic agent for the same reason as EMATE.

Recently, we found that although some DPM derivatives have ER-agonistic activity, others have ER-antagonistic activity. Therefore, we set out to design novel non-steroidal DPM-type STS inhibitors that would release ER antagonist metabolites upon hydrolysis by STS (Fig. 3). A similar approach has already been reported for steroid analogs. ¹³

In recent years, various silicon-containing bioactive compounds have been reported. ^{14,15} The introduction of silicon into compounds can improve various biological properties, including selectivity, potency, pharmacokinetics, pharmacodynamics and cell penetration. Indeed, several silicon-containing agents have advanced to clinical trials. ^{16,17} Also, we have developed silicon-containing tubulin polymerization inhibitors. ¹⁸ It has already been reported that replacement of quaternary carbon in DPM with sulfur increased the STS-inhibitory activity. Since the silicon atom is larger than carbon, like sulfur, we speculated that introduction of silicon could also enhance STS-inhibitory activity.

In this paper, we describe the design and synthesis of nonsteroidal, silicon-containing STS inhibitors that release an ER antagonist upon hydrolysis by STS. The biological activities of these inhibitors were examined by means of STS-inhibitory activity assay and ER reporter gene assay.

2. Results and discussion

2.1. Molecular design and computational studies

It has been reported that the STS-inhibitory activity of sulfur derivative **2** was stronger than that of carbon derivative **1**. Generally, bonds involving sulfur are longer than those involving carbon. The single-bond covalent radii of carbon and sulfur are 75 pm and 103 pm, respectively, whereas that of silicon is 116 pm. Therefore, we hypothesized that replacement of quaternary carbon in the DPM skeleton with silicon might also result in enhancement of STS-inhibitory activity. Based on this hypothesis, we designed silicon-containing compound **3a**. We next calculated the distances between the two benzene ring (*d*) in compounds **1**, **2** and **3a**. Structure optimizations were performed at the MP2/6-31+G* level of theory with the Gaussian 09 program package. The results are illustrated in Figure 4. As expected, distance (*d*) in silicon compound **3a** was longer than those in carbon compound **1** and sulfur compound **2**.

2.2. Chemistry

Based on our hypothesis, we planned to prepare siliconcontaining compound **3a** and its derivatives **8**, **10** and **15a–18a**. These compounds were prepared by usual organic synthetic methods as illustrated in Scheme **1**. Compounds **9a**, **11a**, **12a** and **14a** were prepared according to the reported method. Briefly, bromophenols (**5a–b**) were reacted with dichlorodialkylsilane in the presence of *n*-butyllithium (*n*-BuLi) in tetrahydrofuran (THF). Compounds **3a**, **15a**, **16a** and **18a** were synthesized by reaction of **9a**, **11a**, **12a** and **14a** with excess sulfamoyl chloride. Compound **17a** was prepared in an analogous manner, starting from dichlorodipropylisilane **4d** and bromophenol **5c**. Mono sulfamate

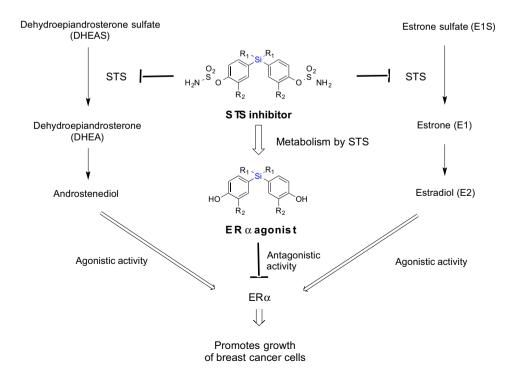


Figure 3. Schematic illustration of the expected action mechanisms of our DPM-type STS inhibitors with pro-estrogen antagonistic character.

Download English Version:

https://daneshyari.com/en/article/10583742

Download Persian Version:

https://daneshyari.com/article/10583742

<u>Daneshyari.com</u>