Bioorganic & Medicinal Chemistry Letters 25 (2015) 956-959

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Diaminopyrimidines, diaminopyridines and diaminopyridazines as histamine H₄ receptor modulators

Brad M. Savall^{*}, Steven P. Meduna, Kevin Tays, Hui Cai[†], Robin L. Thurmond, Patricia McGovern, Michael Gaul, Bao-Ping Zhao[‡], James P. Edwards

Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, United States

ARTICLE INFO

Article history: Received 17 November 2014 Revised 8 December 2014 Accepted 9 December 2014 Available online 23 December 2014

Keywords: Histamine H₄ Antagonists Pyrimidine Pyridine Pyridazine

ABSTRACT

Previously disclosed H_4 receptor modulators, the triamino substituted pyridines and pyrimidines, contain a free primary amino ($-NH_2$) group. In this Letter we demonstrate that an exocyclic amine (NH_2) is not needed to maintain affinity, and also show a significant divergence in the SAR of the pendant diamine component. These *des*-NH₂ azacycles also show a distinct functional spectrum, that appears to be influenced by the diamine component; in the case of the 1,3-amino pyrimidines, the preferred diamine is the amino pyrrolidine instead of the more common piperazines. Finally, we introduce 3,5-diamino pyridazines as novel histamine H_4 antagonists.

© 2014 Elsevier Ltd. All rights reserved.

The histamine H₄ receptor is a 390 amino acid G-protein coupled receptor that is implicated in the treatment of inflammatory diseases such as asthma and allergic rhinitis based on the expression of the H₄ receptor on eosinophils, mast cells, dendritic cells and other leukocytes.^{1,2} [N] 7777120 (1), the prototypical H_4 carboxamide derived antagonist, has served as a useful pharmacological tool, however the rapid metabolism makes it less than ideal as an in vivo tool.^{3,4} Recently, there have been several reports from multiple groups on pyrimidine and pyridine based H₄ antagonists,^{5,6} including our recent reports on several new histamine H₄ antagonist chemotypes. For example, the tricyclic aminopyrimidines typified by JNJ 40279486 (2), the 6-alkyl-2,4-diamino pyrimidines, such as JNJ 39758979 (3), and the related 2-amino azacycles, such as the triamino pyridines (4) and pyrimidines (5-6).⁷⁻⁹ Previously disclosed H₄ receptor modulators, the triamino substituted pyridines (4) and pyrimidines (5, 6) contain a free -NH₂ group as a common structural motif. In this paper we disclose a series of diamino substituted pyridine (7-11) and pyrimidines (12-16) without a free $-NH_2$ group demonstrating a free $-NH_2$ group is not required for H₄ histamine receptor modulation. In addition we disclose a series of diamino pyridazines (17-19), a new series of H₄ histamine receptor modulators (Fig. 1).

Chemistry: Scheme 1 describes a representative synthetic route used to prepare the 2,4-diamino pyridines. Commercially available 2-fluoro-4-bromopyrimidine (**20**) was combined with a primary amine and stirred in THF at room temperature to provide a high yield of the 2-amino substituted 4-bromopyridine (**21**). The use of a Pd catalyzed Buchwald–Hartwig amination¹⁰ to install the diamine component delivered the desired analogs (**7–11**) in moderate to high yield. For the compounds with BOC groups, the BOC was removed by the use of 6 N HCl in formic acid, followed by azeotropic removal of the formic acid with methanol on a rotary evaporator.

Scheme 2 outlines the syntheses of the 2,4-diamino pyrimidines. Starting with commercially available 2,4-dichloropyrimidine (**22**), the diamine component selectively added at the 4-position when heated in the presence of di-isopropyl ethylamine in isopropyl alcohol at 160 °C in the microwave. Heating of **23** with excess primary amine in isopropyl alcohol at 160 °C in isopropanol under microwave irradiation provided the desired diamino substituted product. Removal of the BOC group with 4.0 M HCl in dioxane provided the final products (**12–16**).

Scheme 3 shows the synthesis of the pyridazine series of compounds. Combining 3,5-dichloropyridazine (**24**) with a diamine in THF at room temperature for 12 h led to very selective reaction at the 5-position to provide intermediate 3-chloropyridazines (**25**). The 3-chloro was not nearly as reactive as the 5-chloro and the second displacement required the use of a Pd mediated coupling protocol. BOC groups were removed by the use of 6 N HCl

^{*} Corresponding author.

E-mail address: bsavall@its.jnj.com (B.M. Savall).

 $^{^\}dagger$ Current addresses: WuXi AppTec, San Diego, CA, United States.

^{*} Current addresses: WuXi AppTec (WuHan) Co., Ltd, United States.

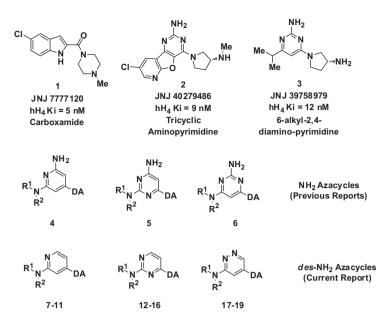
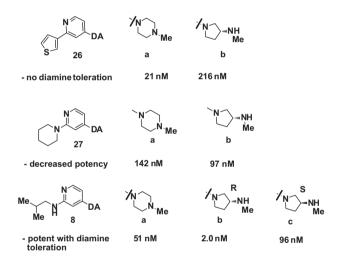
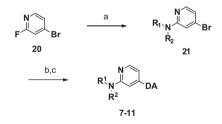
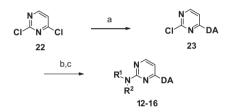
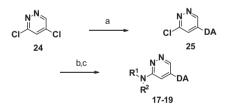


Figure 1. Selective histamine H₄ receptor antagonists. DA refers to a substituted piperazine or aminopyrrolidine. R¹R²N and DA are defined by Figure 2 and Tables 1–6.


Figure 2. Lead design DA refers to a substituted piperazine or aminopyrrolidine.


Scheme 1. Reagents and conditions: DA refers to a substituted piperazine or aminopyrrolidine. (a) R^1R^2NH , THF, 23 °C 1–2 h; (b) diamine, LiHMDS, $Pd_2(DBA)_3$, X-PHOS, THF, 60 °C 1–2 h microwave (μ W), (c) 4.0 M HCl/dioxane; 27–84% combined a and b steps.

in formic acid, followed by azeotropic removal of the formic acid with methanol on a rotary evaporator to provide the final products (**17–19**).

During the follow up efforts to our initial screening campaign, we identified the thiophene substituted pyridine (**26a**), as a reasonably potent histamine H_4 receptor ligand (21 nM) (Fig. 2).

Scheme 2. Reagents and conditions: DA refers to a substituted piperazine or aminopyrrolidine. (a) R^1R^2NH , DIEA, IPA, 100–160 °C 1–2 h microwave (μ W); (b) diamine, DIEA, IPA, 100–160 °C 1–2 h μ W; (c) 4.0 M HCl in dioxane, MeOH, 22–54% combined steps a–c.

Scheme 3. Reagents and conditions: DA refers to a substituted piperazine or aminopyrrolidine. (a) R^1R^2NH , THF, 23 °C 12 h; (b) diamine, DIEA, (toluene, DME or *t*-BuOH), 65–100 °C 1–24 h; (c) 6.0 HCl_(aq), formic acid, 16–69% combined steps a–c.

Replacing the *N*-methyl piperazine (**26a**) with other amines, such as (*R*)-aminomethyl pyrrolidine (**26b**), resulted in a loss of affinity. This lack of 'tolerance' for diamines other than *N*-methyl piperazine has been previously noted with other histamine H₄ receptor ligands such as JNJ 7777120. Replacement of the thiophene with a piperidine led to a reduction of potency for the *N*-methyl piperazine derivative (**27a**, $K_i = 142$ nM), but a slight increase in the case of the 3-aminomethylpyrrolidine (**27b**, $K_i = 97$ nM). Prompted by our previously reported observations in the containing pyrimidine series containing an $-NH_2$ (**5–6**), we investigated the secondary amines that provided an H-bond donor at the 2-position (e.g., **8a–c**). This change resulted in an ~3 fold boost in affinity for the piperazine (**8a**, $K_i = 51$ nM) and an ~20 fold boost for the amino pyrrolidine (**8b**, $K_i = 2.0$ nM). This series was further explored with other alkyl groups and diamines (Table 1) and continued the

Download English Version:

https://daneshyari.com/en/article/10585911

Download Persian Version:

https://daneshyari.com/article/10585911

Daneshyari.com