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a b s t r a c t

The great majority of molecular modeling tasks require the construction of a model that is then used to
evaluate new compounds. Although various types of these models exist, at some stage, they all use
knowledge about the activity of a given group of compounds, and the performance of the models is
dependent on the quality of these data. Biological experiments verifying the activity of chemical com-
pounds are often not reproducible; hence, databases containing these results often possess various activ-
ity records for a given molecule. In this study, we developed a method that incorporates the uncertainty
of biological tests in machine-learning-based experiments using the Support Vector Machine as a classi-
fication model. We show that the developed methodology improves the classification effectiveness in the
tested conditions.

� 2014 Published by Elsevier Ltd.

Molecular modeling methods (although abstract) always make
use of experimental data. They either constitute basis upon which
the model is constructed (e.g., pharmacophore models)1 or they are
used as a training/verification element (e.g., docking).2 At some
stage, they all use knowledge about the activity of a given group
of compounds.

There are a number of databases that provide quantitative
information on the biological activity of chemical compounds, such
as ChEMBL,3 PDSP,4 and PubChem,5 among others. However, due to
the inconsistency of the results obtained from in vitro experiments,
for some compounds, there is more than one provided Ki (or equiv-
alent parameter) value. For example, in the case of cocaine, there
are 815 different activity records (with differences also occurring
within the same assay conditions—for example, 22 activities
reported for the cocaine potency towards D2 receptor) in the
ChEMBL database.

In this study, we developed a modification of the Support Vector
Machine (SVM)6 that takes the uncertainty of biological experi-
ments into account. This method was verified using data from
the ChEMBL database on 25 protein targets and PaDEL finger-
prints7 to represent the compound structures. The approach was
compared with standard experiments that did not consider the
uncertainty of the in vitro data, and its superiority over standard
methods was proven.

We propose to use knowledge on the uncertainty of the activity
of compounds by exploiting the variances in their Ki values that
have been reported in activity databases, and we will show how
this information can be incorporated into the Support Vector
Machine’s optimization problem. Thus, one can use nearly any
existing implementation of the SVM to perform such analysis. Let
us denote our samples from the dataset as triplets (xi, yi, ai), where
xi is a compound’s fingerprint representation, yi is its activity class
(+1: active or �1: inactive), and ai is the set of Ki values obtained
during experimental activity testing. We can reformulate the Sup-
port Vector Machine’s optimization problem to the following,
which exploits knowledge of the activity uncertainty:

minimize
w;b
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where ni are slack variables that measure how far the ith point is
from the correct classification and N is the number of molecules
used for predictive model construction (compounds present in the
training set).

As a result, compounds with high Ki variance are less important
during model construction (they ‘are allowed to’ violate the
separating margin by the distance proportional to their values’
variances). From a practical point of view, this type of optimization
procedure can be solved using samples-weighted SVM, with the
i’th sample weight equal to (1 + var(ai))�1. It is worth noting that,
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although it is a modification of the optimization problem, this
method does not require any custom implementation, and in fact,
any existing SVM library that supports this (samples) weighting
(including SVMlight,8 scikit-learn,9 etc.) can be used. Figure 1
shows how introduction of knowledge about uncertain data helps
the SVM to find the best separating hyperplane. It is easy to notice
that for the entire certain dataset (where each compound has only
one annotated Ki value), this problem degenerates to a simple SVM
optimization.

The applicability of the method was verified using 25 protein tar-
gets (serotonin receptors 5-HT2A,10 5-HT2C,11 5-HT6,12 and 5-HT7,13

cyclin dependent kinase 2 (CDK2),14 muscarinic receptor M1,15 MAP
kinase ERK2,16 acetylcholinesterase (AChE),17 adenosine receptor
A1,18 alpha-2A adrenergic receptor (a2AR),19 atrial natriuretic pep-
tide receptor (ANP),20 beta-1 adrenergic receptor (beta1AR),21 beta-
3 adrenergic receptor (beta3AR),21 cannabinoid CB1 receptor,22

delta opioid receptor (DOR),23 dopamine receptor D4,24 histamine
receptor H1,25 histamine receptor H3,26 HIV integrase (HIVi),27 insu-
lin receptor (IR),28 tyrosine kinase ABL,29 human leukocyte elastase
(HLE),30 norepinephrine transporter (NET),31 phosphodiesterase 4A
(PDE4A),32 and vasopressin 1A receptor (V1a)33) which were repre-
sented by the following fingerprints generated with the use of the
PaDEL-Descriptor: E-state Fingerprint (EstateFP, 79 bits),34

Extended Fingerprint (ExtFP, 1024 bits),35 Klekota–Roth Fingerprint
(KlekFP, 4860 bits),36 MACCS Fingerprints (MACCSFP, 166 bits),37

Pubchem Fingerprint (PubchemFP, 881 bits),38 and Substructure
Fingerprint (SubFP, 308 bits), respectively.39

Compounds with experimentally verified activity towards the
selected proteins were obtained from the ChEMBL database. Only
molecules whose activities were quantified in Ki or IC50 (after care-
ful data analysis and examination of the most common protein
concentrations, it was assumed that Ki = IC50/2) and were tested
in assays on human, rat-cloned or native receptors were taken into
account. The compounds were considered active when the median
value of all Ki values provided for a particular instance was lower
than 100 nM, and they were considered inactive when the median
value was greater than 1000 nM. The number of compounds from
each group for the selected targets together with an analysis of the
reliability of the biological data is shown in Table 1 (detailed anal-
ysis of Ki variance is included in the Supplementary materials sec-
tion). The table shows that there are great differences in terms of
reliability of the biological data between the various targets (on
average, nonzero variances occurred for 5-HT2C in less than 5% of
cases vs HIVi, where different Ki values were found for almost
50% of cases) and the various groups of compounds—for example,
for the activity threshold applied in this study, over 10% of active

5-HT7 ligands had more than one provided Ki value, whereas only
approximately 2% of inactive compounds had uncertain Ki values
(in terms of the number of different provided values).

Due to high-class imbalance (differences between the number
of active and inactive compounds within each dataset), the classi-
fication effectiveness was evaluated using a balanced quality mea-
sure, that is, balanced accuracy (BAC):

1
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To maximize the score under some balanced measure (such as
BAC or Matthew’s Correlation Coefficient),40 the class-based
weighting scheme in the SVM formulation should be used. By
default, SVM maximizes the accuracy measure (the percentage of
correct predictions), which is not balanced and favors the larger
class. The class-weighting technique is a well-known approach
based on weighting samples by the number inversely proportional

Figure 1. Visualization of the activity-uncertainty-weighted SVM with: (a) linearly separable data, (b) linearly nonseparable data and variance of the rightmost point ai equal
to 0, and (c) linearly nonseparable data and variance of the rightmost point ai equal to 1; the higher the variance, the less important a particular sample.

Table 1
The number of active and inactive compounds for each target used in the study with
an analysis of the reliability of the biological data.

Protein Actives Inactives

5-HT2A 1836 (6.3%) 852 (2.6%)
5-HT2C 1211 (5.3%) 927 (2.6%)
5-HT6 1491 (8.6%) 342 (0.5%)
5-HT7 705 (10.6%) 340 (1.8%)
CDK2 741 (4.2%) 1462 (2.1%)
M1 760 (19.7%) 939 (11%)
ERK2 72 (1.4%) 958 (1.9%)
AChE 1147 (11.9%) 1804 (4.8%)
A1 1789 (8.2%) 2286 (3.9%)
a2AR 364 (8.0%) 283 (2.5%)
ANP 114 (0.2%) 142 (1.1%)
Beta1AR 195 (1.8%) 477 (0.1%)
Beta3AR 111 (0.9%) 133 (0.0%)
CB1 1964 (15.3) 1714 (4.6%)
DOR 2535 (9.1%) 1992 (1.9%)
D4 1034 (11.1%) 449 (1.8%)
H1 636 (8.5%) 546 (1.3%)
H3 2706 (7.4%) 313 (1.7%)
HIVi 102 (32.4%) 915 (53.6%)
IR 147 (3.4%) 1139 (1.7%)
ABL 409 (7.9%) 582 (3.2%)
HLE 820 (4.0%) 610 (1.4%)
NET 1738 (15.3%) 1299 (5.3%)
PDE4A 303 (11.0%) 82 (10.9%)
V1a 467 (12.3%) 300 (1.7%)

Percentages in parentheses denote the number of compounds with more than one
provided Ki value.
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