FISEVIER Contents lists available at ScienceDirect ## Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl ## Heterocyclic core analogs of a direct thrombin inhibitor Timothy A. Blizzard ^{a,*}, Sanjay Singh ^b, Basanagoud Patil ^b, Naresh Chidurala ^b, Venukrishnan Komanduri ^b, Samarpita Debnath ^b, Sergei Belyakov ^b, Alejandro Crespo ^a, Alice Struck ^a, Marc Kurtz ^a, Judyann Wiltsie ^a, Xun Shen ^a, Lisa Sonatore ^a, Marta Arocho ^a, Dale Lewis ^a, Martin Ogletree ^a, Tesfaye Biftu ^a #### ARTICLE INFO Article history: Received 18 November 2013 Revised 1 January 2014 Accepted 3 January 2014 Available online 10 January 2014 Keywords: Thrombin inhibitor DTI Thrombosis Anti-thrombotic #### ABSTRACT Thrombin is a serine protease that plays a key role in blood clotting. Pyrrolidine 1 is a potent thrombin inhibitor discovered at Merck several years ago. Seven analogs (2–8) of 1 in which the pyrrolidine core was replaced with various heterocycles were prepared and evaluated for activity against thrombin, clotting factors VIIa, IXa, Xa, and XIIa, and trypsin. The thiomorpholine analog 6 was the most active, essentially matching the thrombin inhibitory activity of 1 with slightly improved selectivity over trypsin. © 2014 Elsevier Ltd. All rights reserved. Thrombotic events (stroke, heart attack, etc.) are an important cause of morbidity and mortality, especially in older patients.¹ A safe and effective drug that could prevent thrombotic events would clearly have a significant positive impact on life expectancy and quality of life. Fortunately, thrombogenesis is a complicated biological process involving a number of enzymes that provide attractive targets for potential new therapies.² Several approved drugs, including Warfarin (a vitamin K epoxide reductase inhibitor), Dabigatran (a thrombin inhibitor), Rivaroxaban and Apixaban (factor Xa inhibitors) are currently used prophylactically to reduce the risk of thrombotic events.³ Unfortunately, current therapy suffers from significant side effects. Bleeding, in particular, remains a significant concern. Thus, there remains an unmet medical need for improved antithrombotic agents that would not have the bleeding liability of current drugs. This is a very active field of research and, in addition to those drugs already on the market, numerous compounds employing a variety of mechanisms are in development.4-6 Thrombin (Factor IIa) is a serine protease that plays a key role in blood clotting. Selective thrombin inhibition is an established mechanism for thromboembolism prevention.^{7,8} Three small molecule thrombin inhibitors have reached the market. The first, Ximelagatran, was subsequently withdrawn due to unacceptable liver toxicity.⁷ Two newer direct thrombin inhibitors, Dabigatran and Argatroban, are currently on the market. Numerous other $$O = N$$ $O = N$ =$ Ximelagatran $$CO_2Et$$ Dabigatran Pyrrolidine **1** is a potent thrombin inhibitor discovered¹⁰ at Merck several years ago as part of a program directed at finding clinically useful thrombin inhibitors.^{10–13} E-mail address: timblizzard@comcast.net (T.A. Blizzard). ^a Merck Research Laboratories, Rahway, NJ. USA ^b Albany Molecular Research, Singapore Research Center, Singapore thrombin and Factor Xa inhibitors are in various stages of development. 9 st Corresponding author. $$\begin{array}{c|c} CI & CI \\ N & N &$$ In their original report, Morissette et al. noted that reducing the core ring size (i.e. replacement of pyrrolidine with azetidine) resulted in reduced thrombin inhibitory activity. ¹⁰ However, the effect of ring expansion was unknown. In an attempt to discover **Scheme 1.** Reagents and conditions: (i) FMOC-Cl, Na_2CO_3 , 1,4-dioxane, water, 16 h, room temp, 52%; (ii) **9**, EDC, HOBT, DMF, 16 h, room temp, 70%; (iii) piperidine, CH_2Cl_2 , 1 h, room temp, 80%; (iv) **10**, Et_3N , THF, -10 °C to room temp, 1 h, 65%; (v) K_2CO_3 , CH_3OH , room temp, 30 m; (vi) TFA, CH_2Cl_2 , room temp, 2 h, 30% for two steps. **Scheme 2.** Reagents and conditions: (i) FMOC-Cl, Na_2CO_3 , 1,4-dioxane, water, 0 °C to room temp, 16 h, 44%; (ii) **9**, EDC, HOBT, DMF, room temp, 16 h, 78%; (iii) piperidine, CH_2Cl_2 , room temp, 2 h, 73%; (iv) **10**, Et_3N , THF, -5 °C to room temp, 1 h, 51%; (v) K_2CO_3 , CH_3OH , room temp, 30 m; (vi) TFA, CH_2Cl_2 , room temp, 2 h, 40% for two steps. **Scheme 3.** Reagents and conditions: (i) CBZ-Cl, NaHCO $_3$, 1,4-dioxane, H $_2$ O, room temp, 16 h, 82%; (ii) K $_2$ CO $_3$, CH $_3$ l, DMF, room temp, 2 h, 74%; (iii) TFA, CH $_2$ Cl $_2$, room temp, 30 m, 97%; (iv) paraformaldehyde, E $_3$ N, NaCNBH $_3$, CH $_3$ OH, AcOH, 0 °C to room temp, 2 h, 70%; (v) H $_2$ (1 atm), 10% Pd/C, CH $_3$ OH, room temp, 3 h, 71%; (vi) **10**, Et $_3$ N, CH $_2$ Cl $_2$, room temp, 30 m, 40%; (vii) LiOH, THF, H $_2$ O, CH $_3$ OH, room temp, 2 h, 59%; (viii) **9**, EDC, HOBT, Et $_3$ N, DMF, room temp, 16 h, 32%; (ix) TFA, CH $_2$ Cl $_2$, room temp, 1 h, 73%. an improved thrombin inhibitor, and to more fully elucidate the SAR of the heterocyclic core of 1, we prepared and report herein a series of six-membered heterocyclic core analogs of 1. We initially targeted the piperidine analog **2**. Starting with acid **11**, ¹⁴ **2** was readily synthesized as outlined in Scheme **1**. Treatment of **11** with FMOC-Cl afforded the protected aminoacid **12** in good yield. The right-hand side chain was then introduced by EDC-mediated coupling of **12** with amine **9**, ¹⁰ to afford intermediate amide **Scheme 4.** Reagents and conditions: (i) TFA, CH_2CI_2 , room temp, 5 h; (ii) FMOC-CI, K_2CO_3 , 1,4-dioxane, H_2O , room temp, 3 h, 84% for two steps; (iii) **9**, EDC, HOBT, DMF, 0 °C to room temp, 5 h, 80%; (iv) piperidine, CH_2CI_2 , room temp, 1 h, 62%; (v) **10**, Et_3N , CH_2CI_2 , 0 °C to room temp, 16 h, 71%; (vi) K_2CO_3 , CH_3OH , room temp, 30 m; (vii) TFA, CH_2CI_2 , 0 °C, 30 m, 48% for two steps. ### Download English Version: # https://daneshyari.com/en/article/10587099 Download Persian Version: https://daneshyari.com/article/10587099 <u>Daneshyari.com</u>