Bioorganic & Medicinal Chemistry Letters 24 (2014) 1176-1179

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

Urokinase-type plasminogen activator expression and Rac1/WAVE-2/ Arp2/3 pathway are blocked by pterostilbene to suppress cell migration and invasion in MDA-MB-231 cells $^{\circ}$

Hyun Suk Ko[†], Ji Sung Kim[†], Sun Mi Cho, Hyo-Jeong Lee, Kwang Seok Ahn, Sung-Hoon Kim, Eun-Ok Lee*

Cancer Preventive Material Development Research Center, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea

ARTICLE INFO

Article history: Received 12 September 2013 Revised 17 December 2013 Accepted 27 December 2013 Available online 7 January 2014

Keywords: Pterostilbene Migration Invasion uPA NF-ĸB Rac1 WAVE Arp2/3 MDA-MB-231 cells

ABSTRACT

Breast cancer is the most common malignancy among females, and cancer invasion and metastasis are the leading causes of cancer death in breast cancer patients. Pterostilbene, a naturally occurring dimethylether analogue of resveratrol, has been demonstrated to possess anti-cancer effects. However, inhibitory effects of pterostilbene on cell migration and invasion and its underlying mechanisms are not fully understood. In this study, we investigated the anti-invasive mechanisms of pterostilbene in human breast cancer cell line MDA-MB-231 cells. Pterostilbene effectively inhibited serum-induced migration and invasion without affecting the viability of breast cancer cells. The mRNA expression and activity of urokinase-type plasminogen activator (uPA) were markedly reduced by pterostilbene treatment. Moreover, pterostilbene attenuated nuclear factor κB (NF-κB) transcriptional activity and DNA binding of NF-κB on uPA promoter. In addition, pterostilbene significantly impaired the activity of Rac1 and the expression of WASP-family verprolin-homologous protein-2 (WAVE-2) and actin-related protein 2/3 (Arp2/3). Overall, these results suggest that pterostilbene caused considerable suppression of cell migration and invasion through blocking NF-κB-mediated uPA expression and Rac1/WAVE/Arp2/3 pathway. © 2014 The Authors. Published by Elsevier Ltd. All rights reserved.

Breast cancer is the most common malignancy among females,¹ and frequently metastasizes to bone, lymph node, brain and lung,² which interrupts successful treatment of breast cancer. Metastasis still considers as the significant cause of mortality being responsible for 90% of cancer deaths.^{2,3}

It is well characterized that urokinase-type plasminogen activator (uPA) system, which is a serine protease family and consists of uPA, uPA receptor (uPAR) and plasminogen activator inhibitors, plays a crucial role in breast cancer metastasis. The binding of uPA to uPAR facilitates extracellular matrix (ECM) degradation, angiogenesis, adhesion, migration and invasion.^{4–6} Duffy et al.⁷ first identified the connection between uPA activity in primary breast cancer and both tumor size and metastatic status, and demonstrated that breast cancer patients with high uPA activity had a poor disease-free interval than those with low activity. Thus, uPA system may be a prognostic marker for aggressive breast cancer and an ideal candidate target for cancer therapy. Rac, a member of Rho family small GTPases, plays a vital role in controlling cell motility. Rac activates actin-related protein 2/3 (Arp2/3) complex via WASP-family verprolin-homologous proteins (WAVEs), thereby inducing reorganization of actin cytoskeleton at the leading edge and consequent formation of lamellipodia.^{8,9} Regulation of these processes is important for cancer therapy because actin cytoskeleton reorganization is the primary mechanism of cell motility and is dynamically occurred during cell migration.⁸ Zhang et al. reported that (–)-Epigallocatechin-3-gallate inhibited breast cancer cell migration and invasion by attenuating Rac1 activity.¹⁰ Furthermore, recent study has demonstrated that Cucurbitacin E decreased tumor cell migration by impairing Arp2/3-dependent actin polymerization in breast cancer.¹¹

Pterostilbene is a naturally occurring dimethylether analogue of resveratrol and stilbene phytoalexin found in several types of berries and grapes.^{12–14} Pterostilbene is reported to have the beneficial effects such as anti-inflammatory, anti-oxidant, analgesic, anti-diabetic, and hypolipidemic activities.^{14–16} In addition, pterostilbene has been suggested to exhibit anti-cancer potentials including inhibition of cell proliferation and induction of apoptosis in many different types of human cancers as effective as resveratrol due to their close similarity in structure.^{12,17–19} Few studies demonstrated that pterostilbene had the ability to suppress cancer cell invasion and metastasis in vitro and in vivo.^{17,20–22} However,

^{*} This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

^{*} Corresponding author. Tel.: +82 2 961 0808; fax: +82 2 964 1064.

E-mail address: leook@khu.ac.kr (E.-O. Lee).

[†] These authors contributed equally to this study.

Figure 1. Cytotoxic effect of pterostilbene against MDA-MB-231 cells. Cells were treated with the indicated concentrations of pterostilbene for 24 h, followed by assessment for cell viability by the MTT assay. Data are shown as means \pm SD of three independent experiments by analysis of Student's *t* test. **p* < 0.05 and ****p* < 0.001 versus untreated control.

Figure 2. Pterostilbene inhibited the migration of MDA-MB-231 cells. The migration ability of cells was carried out by the wound healing assay. The confluent cells were scratched and then treated with pterostilbene in a serum-containing culture medium for 24 h. (A) The cell were stained with Diff-Quick and then randomly chosen fields were photographed at 100×. (B) The number of cells migrated into the scratched area was calculated as a percentage of migration. Data are shown as means ± SD of two independent experiments by analysis of Student's *t* test. ***p* < 0.01 and ****p* < 0.001 versus serum-treated control.

Figure 3. Pterostilbene inhibited the invasion of MDA-MB-231 cells. The invasion assay was performed using 48-well microchemotaxis chambers with matrigel-coated filter for 15 h. (A) The cell were stained with Diff-Quick and then randomly chosen fields were photographed at 100×. (B) The number of cells invaded to the lower surface was calculated as a percentage of invasion. Data are shown as means \pm SD of three independent experiments by analysis of Student's *t* test. *###p* < 0.001 versus untreated control and ****p* < 0.001 versus serum-treated control.

Figure 4. Pterostilbene reduced the mRNA expression and activity of uPA in MDA-MB-231 cells. Cells were treated with pterostilbene for 24 h. (A) The mRNA expression of uPA and uPAR were determined by RT-PCR analysis. GAPDH was used as a loading control. (B) The activity of uPA was assessed using a SPECTROZYME[®] PL in conditioned medium from pterostilbene-treated MDA-MB-231 cells. Data are shown as means ± SD of two independent experiments by analysis of Student's *t* test. ****p* < 0.001 versus untreated control.

Download English Version:

https://daneshyari.com/en/article/10587123

Download Persian Version:

https://daneshyari.com/article/10587123

Daneshyari.com