ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and assessment of catechol diether compounds as inhibitors of trypanosomal phosphodiesterase B1 (TbrPDEB1)

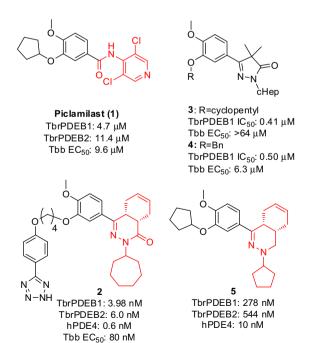
Jennifer L. Woodring^a, Nicholas D. Bland^b, Stefan O. Ochiana^a, Robert K. Campbell^b, Michael P. Pollastri^{a,*}

- a Northeastern University, Department of Chemistry and Chemical Biology, 417 Egan Research Center, 360 Huntington Avenue, Boston, MA 02115, USA
- b Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, MA 02543, USA

ARTICLE INFO

Article history:
Received 21 June 2013
Revised 7 August 2013
Accepted 13 August 2013
Available online 21 August 2013

Keywords: Trypanosoma brucei Phosphodiesterases TbrPDEB1 TbrPDEB2 Piclamilast Neglected Disease Drug discovery


ABSTRACT

Human African trypanosomiasis (HAT) is a parasitic neglected tropical disease that affects 10,000 patients each year. Current treatments are sub-optimal, and the disease is fatal if not treated. Herein, we report our continuing efforts to repurpose the human phosphodiesterase 4 (hPDE4) inhibitor piclamilast to target trypanosomal phosphodiesterase TbrPDEB1. We prepared a range of substituted heterocyclic replacements for the 4-amino-3,5-dichloro-pyridine headgroup of piclamilast, and found that these compounds exhibited weak inhibitory activity of TbrPDEB1.

© 2013 Elsevier Ltd. All rights reserved.

Human African trypanosomiasis (HAT) is a neglected tropical disease caused by the parasites *Trypanosoma brucei gambiense* and *T. b. rhodesiense*. Together, over 60 million people in 36 countries in sub-Saharan Africa are at risk, with approximately 10,000 infections annually. HAT is fatal unless treated and the four drugs approved for this indication: pentamidine, suramin, eflornithine, and melarsoprol, are inadequate for a variety of reasons, including cost, toxicity, and lack of oral bioavailability. For instance, melarsoprol is especially toxic as it induces reactive encephalopathy in 5–10% of patients, killing approximately half of them. As such, new medicines are desperately needed but pharmaceutical companies tend to deprioritize diseases such as HAT due to an inability to recover research costs from the extremely poor who are the most affected by the disease.

In order to speed up the drug discovery process, a drug repurposing approach³ has been taken against two *T. brucei* phosphodiesterases (PDEs), TbrPDEB1 and TbrPDEB2.^{4–6} Simultaneous RNAi knockdown of both is fatal,⁷ suggesting that small molecule inhibitors of these enzymes could be useful interventions.^{4,8} Humans have 11 PDEs that have been well explored, producing numerous clinical drug candidates.⁹ The catalytic domains of human PDEs

Figure 1. Headgroup replacement rationale based upon related TbrPDEB1 inhibitor chemotypes.

^{*} Corresponding author. E-mail address: m.pollastri@neu.edu (M.P. Pollastri).

Scheme 1. Synthesis of 8a-c. Reagents and conditions: (a) (i) TFAA, t-BuOK, MeCN, rt, 45 min, (ii) NBS, MeCN, rt, o/n; (b) ROH, PPh₃, DEAD, toluene, rt, 2 h; (c) R-B(OH)₂, Na₂CO₃, Pd(PPh₃)₄, toluene/EtOH/H₂O (4:1:1), 105 °C, o/n.

Table 1Aryl analogs tested against TbrPDEB1

Compound	\mathbb{R}^1	TbrPDEB1 (% inh) ^a
8a	N{\{ \}	18.7 ± 10.7 ^b
8b	о-{N=}{ { }	7.6 ± 2.6
8c	N Sé	69.1 ± 13.9

^a Data shown are average of 3 replicate independent experiments.

Scheme 2. Synthesis of **11** and **12**. Reagents and conditions: (a) (i) m-CPBA, CHCl₃, 0 °C to rt, o/n, (ii) POCl₃, TEA, CHCl₃, MW, 100 °C, 1 h; (b) n-BuLi, then bis-(pinacolato)diborane, -78 °C to rt, o/n; (c) 2,4-dichloropyrimidine, Na₂CO₃, PPh₃, Pd₂(dba)₃, tol/EtOH/H₂O (4:1:1), 105 °C, o/n; (d) R^1R^2NH , DIEA, NMP or DMF, MW, 250 °C, 1 h; (e) R^1R^2NH , DIEA, NMP or DMF, 80 °C, o/n.

are 30–35% homologous to those of the parasite enzymes TbrP-DEB1 and TbrPDEB2. Recent crystallographic evidence confirms that there are key regions of the trypanosomal protein that may allow for selective inhibition over human PDEs. ¹⁰ We previously reported that human PDE4 inhibitor piclamilast (1) represents a promising lead series for optimization towards selective TbrPDEB inhibitors, ⁴ and others have shown analogous catechol-derived inhibitors to have high potency against the trypanosomal enzyme. ^{8,11} In this Letter, we describe our efforts to explore replacements for the 2,6-dichloro-4-pyridylamide headgroup of 1 by assessing their potency against TbrPDEB1.

Our rationale for focusing first on the headgroup region of **1** is shown in Figure 1. The optimization of phthalizinones as human

Table 2 Pyridine and Pyrimidine analogs tested against TbrPDEB1

$$R^{1} \underbrace{0}_{X \downarrow N} \underbrace{N}_{HN \downarrow R^{2}}$$

Compound	R^1	R^2	X	TbrPDEB1 ^a (% inh)
11a	<u></u>	_N{}	С	34.0 ± 22.8
11b	<u></u>	\\{	С	27.1 ± 6.1
12a		N	N	15.8 ± 21.2
12b	<u></u> }		N	29.8 ± 0.3
12c	<u></u> }		N	12.7 ± 17.9
12d	├	<u></u>	N	20.6 ± 8.8
12e	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		N	32.9 ± 6.0
12f	<u></u>	├	N	3.9 ± 0.5
15a		N—§	С	48.0 ± 3.1
15b		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	С	28.4 ± 2.8
15c			С	7.2 ± 33
16a		N	N	14.5 ± 20.5
16b		├	N	16.1 ± 22.8
16c		<u></u>	N	21.8 ± 4.6 ^b
16d		₩	N	23.2 ± 10.9

^b Replicate of 5 independent experiments.

Download English Version:

https://daneshyari.com/en/article/10587332

Download Persian Version:

https://daneshyari.com/article/10587332

<u>Daneshyari.com</u>