

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and optimization of novel 4,4-disubstituted cyclohexylbenzamide derivatives as potent 11β-HSD1 inhibitors

Daqing Sun^{*,†}, Zhulun Wang[†], Seb Caille[‡], Michael DeGraffenreid[†], Felix Gonzalez-Lopez de Turiso[†], Randall Hungate[‡], Juan C. Jaen[§], Ben Jiang[†], Lisa D. Julian[†], Ron Kelly[†], Dustin L. McMinn[†], Jacob Kaizerman[†], Yosup Rew[†], Athena Sudom[†], Hua Tu[¶], Stefania Ursu[†], Nigel Walker[†], Maren Willcockson[†], Xuelei Yan[†], Qiuping Ye[†], Jay P. Powers[§]

Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, USA

ARTICLE INFO

Article history: Received 19 September 2010 Revised 23 October 2010 Accepted 26 October 2010 Available online 31 October 2010

Keywords: 11B-HSD1 11B-HSD2 Diabetes Metabolic syndrome Hydroxysteroid dehydrogenase 4,4-Disubstituted cyclohexylbenzamides

ABSTRACT

The synthesis and SAR of a series of 4,4-disubstituted cyclohexylbenzamide inhibitors of 11β -HSD1 are described. Optimization rapidly led to potent, highly selective, and orally bioavailable inhibitors demonstrating efficacy in both rat and non-human primate ex vivo pharmacodynamic models. © 2010 Elsevier Ltd. All rights reserved.

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key enzyme that acts as an NADPH-dependent reductase capable of converting inactive glucocorticoids such as cortisone into their active form (e.g., cortisol) in specific tissues, such as liver, adipose, and brain.^{1–4} Conversely, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), a structurally related isoenzyme of 11β-HSD1, catalyzes the conversion of cortisol to cortisone using NADP⁺ as a cofactor. 11β-HSD2 is expressed in cells that contain the mineralocorticoid receptor (MR) and protects the MR by converting cortisol to cortisone.⁵ Selective inhibition of 11β-HSD1 may be a viable therapeutic strategy for the treatment of metabolic syndrome and has attracted significant attention from the pharmaceutical research community.^{6–29}

We previously described the design and optimization of substituted cyclohexylbenzamide 11β -HSD1 inhibitors.^{30–32} During the course of that research, we noted that 4,4-disubstituted cyclohexylbenzamides, such as compound **1** (Fig. 1), exhibited significantly less potential for PXR transactivation relative to the corresponding 4-monosubstituted analogs. In addition, **1** showed excellent cross-species pharmacokinetics and in vivo inhibition of 11 β -HSD1 in a rat ex vivo pharmacodynamic model. However, the potency of **1** made it unsuitable for further development in its present form. We felt that additional modifications of **1** at the 4-position of the cyclohexane ring would offer an opportunity to increase its potency while maintaining other properties (such as pharmacokinetics) which would provide a compound more suitable for development.

Compounds were synthesized via the routes outlined in Schemes 1–5.³³ 4,4-Disubstituted cyclohexyl benzamides **2**, **9**, **14**, **15**, and **16**, were prepared in a straightforward manner (Scheme 1). 4-Aryl/heteroaryl, 4-cyanocyclohexanones **19** were obtained by a

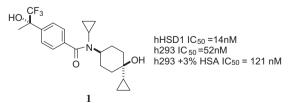
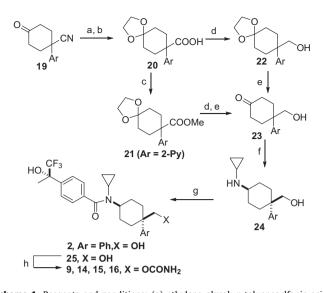
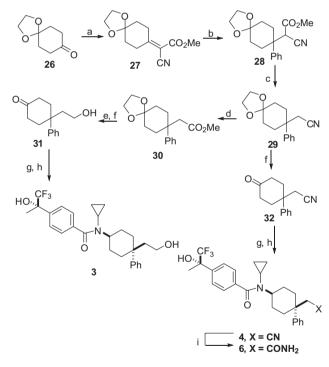


Figure 1. An early 4,4-disubstituted cyclohexylbenzamide 11β-HSD1 inhibitor (1).

^{*} Corresponding author. Tel.: +1 650 244 2195.

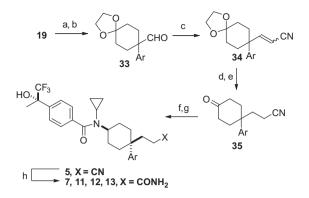

E-mail address: daqings@amgen.com (D. Sun).

[†] Amgen, Inc., South San Francisco, CA, United States.

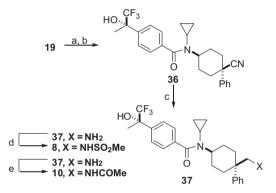

[‡] Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.

[§] Present address: ChemoCentryx, Inc., Mountain View, CA 94043, United States.

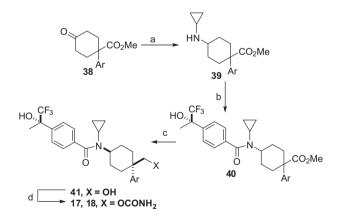
¹ Present address: LakePharma, Inc., 530 Harbor Blvd., Belmont, CA 94002, United States.



Scheme 1. Reagents and conditions: (a) ethylene glycol, *p*-toluenesulfonic acid, benzene, reflux, 45–92%; (b) ethylene glycol, KOH, 170 °C, 54–88%; (c) K₂CO₃, Mel, THF, 52–74%; (d) LiAlH₄, THF, reflux, 54–92%; (e) 3 N HCl, THF, 60–95%; (f) cyclopropylamine, NaBH(OAc)₃, acetic acid, dichloroethane, 8–24%; (g) EDC, HOAt, (S)-4-(1,1,1-trifluoro-2-hydroxypropan-2-yl)benzoic acid, DMF, 48–57%; (h) tri-chloroacetyl isocyanate, neutral Al₂O₃, CHCl₃, 84–95%.



Scheme 2. Reagents and conditions: (a) ethyl cyanoacetate, acetic acid, NH₄OAc, toluene, reflux, 70%; (b) 2-bromobenzene, *n*-BuLi, Cul, *n*-Bu₂S, Et₂O, 49%; (c) DMSO, NaCl, H₂O, 80%; (d) (i) ethylene glycol, KOH, 170 °C, 54–92%; (ii) K₂CO₃, Mel, THF, 52–74%; (e) LiAlH₄, THF, 65–84%; (f) 3 N HCl, THF, 60–75%; (g) cyclopropylamine, NaBH(OAc)₃, acetic acid, dichloroethane, 21–35%; (h) EDC, HOAt, (*S*)-4-(1,1,1-trifluoro-2-hydroxypropan-2-yl)benzoic acid, DMF, 58–62%; (i) KOH, *t*-BuOH, 90 °C, 81%.


tandem one-pot double Michael addition–Dieckman condensation between methyl acrylate and the appropriate benzylic nitrile, followed by Krapcho decarboxylation.³⁴ Protection of **19** as its monoethylene ketal was followed by hydrolysis of the nitrile to produce acid **20**. Reduction of **20** with LiAlH₄ followed by removal of the ketal protecting group gave disubstituted cyclohexanones **23**.

Scheme 3. Reagents and conditions: (a) ethylene glycol, *p*-toluenesulfonic acid, benzene, reflux, 45–92%; (b) LiAlH₄ (0.5 equiv), THF, 80–98%; (c) NaH, diethyl (cyanomethyl) phosphonate, THF, 63–80%; (d) H₂, 10% Pd/C, EtOAc, 89–99%; (e) 3 N HCl, THF, 63–76%; (f) cyclopropylamine, NaBH(OAc)₃, acetic acid, dichloroethane, 33%; (g) EDC, HOAt, (S)-4-(1,1,1-trifluoro-2-hydroxypropan-2-yl)benzoic acid, DMF, 52%; (h) KOH, *t*-BuOH, 90 °C, 77%.

Scheme 4. Reagents and conditions: (a) cyclopropylamine, NaBH(OAc)₃, acetic acid, dichloroethane, 75–78%; (b) EDC, HOAt, (S)-4-(1,1,1-trifluoro-2-hydroxypropan-2-yl)benzoic acid, DMF, 49–57%; (c) H₂, Raney Ni, 28% NH₄OH, MeOH, 98%; (d) MsCl, Et₃N, 75%; (e) Hunig's base, acetyl chloride, DMF, 79%.

Scheme 5. Reagents and conditions: (a) cyclopropylamine, NaBH(OAc)₃, acetic acid, dichloroethane, 94%; (b) EDC, HOAt, (*S*)-4-(1,1,1-trifluoro-2-hydroxypropan-2-yl)benzoic acid, DMF, 74%; (c) LiAlH₄, THF, 21–31%; (d) trichloroacetyl isocyanate, neutral Al₂O₃, CHCl₃, 54%.

In a similar fashion, 2-pyridyl cyclohexanone **23** was prepared by conversion of **20** into ester **21** followed by reduction and deprotection. Reductive amination of **23** with cyclopropylamine resulted in a mixture of *cis/trans* cyclopropylamine products, and the desired

Download English Version:

https://daneshyari.com/en/article/10588741

Download Persian Version:

https://daneshyari.com/article/10588741

Daneshyari.com