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Figure 1.
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BMPR1b is a serine/threonine protein kinase with a cytosolic ATP-
binding domain that phosphorylates SMADs 1/5/8 as part of the
signaling cascade that regulates expression of Id1. Competitive
inhibition of binding assays revealed that desilylated derivative
3e inhibits binding of the immobilized ATP-binding site ligand to
BMPR1b (K; = 11.7 £ 0.5 pM).° In contrast, 3a did not inhibit bind-
ing in this assay, thus suggesting that 3a may act as a prodrug form
of the biologically active derivative 3e.> Docking of 3e in the active
site of BMPR1b showed that the lowest energy pose binds with the
5’-terminus embedded deep inside the ATP binding pocket, with
the remaining portions of the molecule extending toward the sol-
vent accessible surface (Fig. 2). In this pose, the N°-phenylureido
group is the functionality in closest proximity to the solvent sur-
face, while the 5-ureido group is proximal to the catalytic triad
(K231, E244, D350) and gatekeeper residues (L277). Because of
the close proximity of the 5'-position to these key residues, we
reasoned that SAR at the 5’ position might conceivably yield
ligands with tighter binding. Here, we report the synthesis and
biological evaluation of a number of derivatives of 3a varying at
the 5’-position, one of which exhibited potent activity against lung
adenocarcinoma cell line NCI-H522 in vitro (ICso = 9.7 nM).

Our initial efforts focused on evaluating the effect of simple
replacement of the 5-NH with a 5’-O-carbamyl group (derivatives
6a-c, Fig. 1). Consistent with our earlier findings, ICso values for
6a-c were approximately two orders of magnitude >3a, thus con-
firming the critical nature of the 5'-NH group for biological activity
(Table 1).° Additional analogs varying at the 5'-position were
prepared as outlined (Schemes 1 and 2). Pivotal intermediates in
these syntheses were compounds 8 and 12. Compound 8 was
prepared via hydrogenolysis of 7 which could easily be prepared
from 5’-chloro-5’-deoxyadenosine via a three-step two-pot reac-
tion sequence previously reported from our laboratory.* Treatment
of 8 with either phenylisocyanate or the appropriate N-alkyl
p-nitrophenylcarbamate gave compounds 9a-c in acceptable
yields (30-55%). Alternatively, 8 could be acylated with chloroacet-
ylisocyanate to give 10a (64%) or sulfonylated with methanesulfo-
nyl chloride or p-toluenesufonyl chloride to give 11a and 11b in
79% and 59% yields, respectively. Compound 10a was converted
to 10b using classical Finkelstein’ conditions and gave the desired
iodo product in 81% yield. Treatment of 8 via a modified Koc¢ovsky

Figure 2. Docking results for 3e docked into the active site of BMPR1b (pdb 3mdy).
Yellow residues: catalytic triad (K231, E244, D350); blue residue: gatekeeper
(L277); magenta tube: G-loop or activation loop (1210, G211, K212, G213, R214,
Y215, G216); magenta ribbon: hinge region (1278, T279, D280, Y281, H282, E283,
N284, G285, S286).

Table 1
Inhibitory effects of the test compounds on the proliferation of murine leukemia cells
(L1210), human T-lymphocyte cells (CEM) and human cervix carcinoma cells (HeLa)

Compound IC50” (pg/mL)

L1210 CEM Hela
3a 3.8+0.3 83+29 3.2+0.2
6a >200 >200 >200
6b 106 >200 >200
6¢c 19+3 125+37 158 £ 60
9a 127 £ 61 >200 25+7
9b 56 £ 30 >200 72 £54
9c 41+04 11+6 3.0+04
10a 0.82+0.48 0.46 +0.10 1.6+0.0
10b 6.8+0.1 0.28 £ 0.07 10+1
11a 101 77 £32 391
11b >100 >100 >100
12 6.7+0.5 7.7+0.7 7.8+1.2
14 59+0.5 6.9+0.1 7504
15 76104 83+1.2 51+3.9
16 19+0.2 1.8+0.2 89+1.7
17 7.9+0.6 1.3+0.6 84+1.1

@ 50% inhibitory concentration or compound concentration required to inhibit
tumor cell proliferation by 50%.
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Scheme 1. Reagents: (a) H,, Pd-C; (b) PhC=N=0; (c) p-NO,-CsH40,CNHR; (d)
CICH,CON=C=0; (e) RSO,Cl; (f) Nal; (g) Cl;CON=C=0; (h) SiOH, MeOH/CH,Cl,; (i)
CF5COCl; (j) FCH,COCL.

carbamylation® method gave compound 12 (81%). Treatment of 12
with trifluoroacetyl chloride or monofluoroacetyl chloride gave
13a and 13b in 66% and 51% yields, respectively. Compound 12
could also be treated sequentially with the modified KoCovsky car-
bamylation® method to give first 14, then 15 in 71% and 61% yields,
respectively (Scheme 2). Compound 16 was also derived from 12
via treatment with chloroacetylisocyanate (69%). Treatment of 16
using Finkelstein’ conditions gave iodo product 17 in excellent
yield (91%).°

Compounds 6a-c, 9a-c, 10a-b, 11a-b, 12, and 14-17 were
evaluated for antiproliferative activity using murine leukemia
L1210, human CD; T-lymphocyte (CEM), and human cervix
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