ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of a nanomolar inhibitor of lung adenocarcinoma in vitro

Jadd R. Shelton^a, Jan Balzarini^b, Matt A. Peterson^{a,*}

- ^a Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
- ^b Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium

ARTICLE INFO

Article history:
Received 1 July 2014
Revised 18 August 2014
Accepted 20 August 2014
Available online 3 September 2014

Keywords: Purine nucleosides Bio-active adenosine derivatives Antiproliferative nucleosides Lung adenocarcinoma

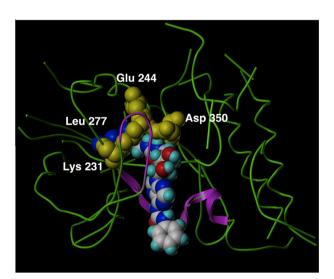
ABSTRACT

Efficient methods for the preparation of 5'-substituted 5'-amino-5'-deoxy-N⁶-ureidoadenosine derivatives are described. Compounds were screened for antiproliferative activity against a panel of murine and human cell lines (L1210, CEM, and HeLa) and/or against the NCI-60. The most potent derivative inhibited the lung adenocarcinoma cell line NCI-H522 at low nanomolar concentrations (GI₅₀ = 9.7 nM).

© 2014 Elsevier Ltd. All rights reserved.

CH₃

Nucleoside derivatives continue to attract significant interest as templates for the development of anticancer¹ or antiviral² chemotherapies. Over the past several decades, numerous derivatives have been made, and a number of such analogs have proven useful as treatments for cancer or viral diseases. As part of research directed toward the discovery of nucleoside-based HIV-integrase inhibitors, we discovered that $N^6,5'$ -bis-ureidoadenosine derivatives 1 and 2 exhibited promising antiproliferative activities against a number of cancer cell lines in vitro (Fig. 1).3 Structure activity relationship studies (SAR) revealed that the 3'-C methylcarbonyl group was not necessary for activity, and compound 3a ($R^1 = tert$ -butyldimethylsilyl (TBS)) exhibited similar activity to 1 and 2 in the NCI-60.4 SAR at the 2',3' positions showed that acid-stable protecting groups such as triisopropylsilyl (TIPS) and tert-butyldiphenylsilyl (TBDPS) were not well tolerated (IC₅₀ values for **3c** and **3d** were approximately two orders of magnitude >3a for the panel of cell lines evaluated); in contrast acid-labile protecting groups such as triethylsilyl (TES) and certain acyl protecting groups were well tolerated (3b was equipotent to 3a while 4d-f were only three to five fold less active). 5 SAR at the N^{6} position showed that variation of the N⁶-ureido substituent (R³) had very little impact (IC₅₀ values for 5a-g were similar to 3a), whereas derivatives lacking an N⁶-ureido group were essentially inactive.⁶


Preliminary mechanistic studies⁶ had supported the conclusion that compounds **1–5** exert their antiproliferative effects via inhibition of bone morphogenetic protein receptor 1b (BMPR1b). BMPR1b is a transmembrane protein receptor that plays a key role in regulating expression of inhibitor of differentiation gene 1 (Id1).

 $[\]begin{split} \text{TBSO} & \text{OTBS} \\ & \text{5a-g} \end{split} \text{TBSO} & \text{OTBS} \\ & \text{6a-c} \end{split} \\ \text{R}^1 = \text{a-t-BuMe}_2 \text{Si, b-Et}_3 \text{Si, c-t-BuPh}_2 \text{Si, d-(iPr)}_3 \text{Si, e-H; R}^2 = \text{a-CH}_3 \text{. b-}n\text{-C}_3 \text{H}_7, \\ & \text{c-(CH}_3)_2 \text{CH. d-C(CH}_3)_3 \text{. e-}n\text{-}C_3 \text{H}_1, & \text{f-}n\text{-}C_7 \text{H}_{15}, & \text{g-}n\text{-}C_9 \text{H}_1, & \text{h-}n\text{-}C_{15} \text{H}_{31}; \\ & \text{R}^3 = \text{a-4-CH}_6 \text{H}_4, & \text{b-4-i-C}_6 \text{H}_4, & \text{c-3-i-C}_6 \text{H}_4, & \text{d-4-CH}_3 \text{O-C}_6 \text{H}_4, & \text{e-C}_6 \text{H}_6 \text{CH}_2, \\ & \text{f-}c\text{-C}_6 \text{H}_{11}, & \text{g-}n\text{-}C_3 \text{H}_7; & \text{R}^4 = \text{a-C}_6 \text{H}_5, & \text{b-}n\text{-}C_3 \text{H}_7; & \text{c-CH}_2 \text{CO}_2 \text{CH}_3 \end{split}$

st Corresponding author.

BMPR1b is a serine/threonine protein kinase with a cytosolic ATPbinding domain that phosphorylates SMADs 1/5/8 as part of the signaling cascade that regulates expression of Id1. Competitive inhibition of binding assays revealed that desilylated derivative 3e inhibits binding of the immobilized ATP-binding site ligand to BMPR1b ($K_d = 11.7 \pm 0.5 \,\mu\text{M}$). In contrast, **3a** did not inhibit binding in this assay, thus suggesting that 3a may act as a prodrug form of the biologically active derivative **3e**. Docking of **3e** in the active site of BMPR1b showed that the lowest energy pose binds with the 5'-terminus embedded deep inside the ATP binding pocket, with the remaining portions of the molecule extending toward the solvent accessible surface (Fig. 2). In this pose, the N^6 -phenylureido group is the functionality in closest proximity to the solvent surface, while the 5'-ureido group is proximal to the catalytic triad (K231, E244, D350) and gatekeeper residues (L277). Because of the close proximity of the 5'-position to these key residues, we reasoned that SAR at the 5' position might conceivably yield ligands with tighter binding. Here, we report the synthesis and biological evaluation of a number of derivatives of 3a varying at the 5'-position, one of which exhibited potent activity against lung adenocarcinoma cell line NCI-H522 in vitro ($IC_{50} = 9.7 \text{ nM}$).

Our initial efforts focused on evaluating the effect of simple replacement of the 5'-NH with a 5'-O-carbamyl group (derivatives **6a-c**, Fig. 1). Consistent with our earlier findings, IC₅₀ values for **6a-c** were approximately two orders of magnitude >3a, thus confirming the critical nature of the 5'-NH group for biological activity (Table 1).6 Additional analogs varying at the 5'-position were prepared as outlined (Schemes 1 and 2). Pivotal intermediates in these syntheses were compounds 8 and 12. Compound 8 was prepared via hydrogenolysis of 7 which could easily be prepared from 5'-chloro-5'-deoxyadenosine via a three-step two-pot reaction sequence previously reported from our laboratory. 4 Treatment of 8 with either phenylisocyanate or the appropriate N-alkyl *p*-nitrophenylcarbamate gave compounds **9a-c** in acceptable yields (30-55%). Alternatively, 8 could be acylated with chloroacetylisocyanate to give 10a (64%) or sulfonylated with methanesulfonvl chloride or p-toluenesufonvl chloride to give 11a and 11b in 79% and 59% yields, respectively. Compound **10a** was converted to **10b** using classical Finkelstein⁷ conditions and gave the desired iodo product in 81% yield. Treatment of 8 via a modified Kočovský

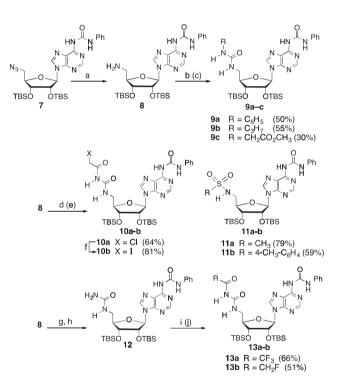


Figure 2. Docking results for **3e** docked into the active site of BMPR1b (pdb 3mdy). Yellow residues: catalytic triad (K231, E244, D350); blue residue: gatekeeper (L277); magenta tube: G-loop or activation loop (I210, G211, K212, G213, R214, Y215, G216); magenta ribbon: hinge region (I278, T279, D280, Y281, H282, E283, N284, G285, S286).

Table 1Inhibitory effects of the test compounds on the proliferation of murine leukemia cells (L1210), human T-lymphocyte cells (CEM) and human cervix carcinoma cells (HeLa)

Compound	IC ₅₀ ^a (μg/mL)		
	L1210	CEM	HeLa
3a	3.8 ± 0.3	8.3 ± 2.9	3.2 ± 0.2
6a	>200	>200	>200
6b	106	>200	>200
6c	19 ± 3	125 ± 37	158 ± 60
9a	127 ± 61	≥200	25 ± 7
9b	56 ± 30	≥200	72 ± 54
9c	4.1 ± 0.4	11 ± 6	3.0 ± 0.4
10a	0.82 ± 0.48	0.46 ± 0.10	1.6 ± 0.0
10b	6.8 ± 0.1	0.28 ± 0.07	10 ± 1
11a	10 ± 1	77 ± 32	39 ± 1
11b	>100	>100	>100
12	6.7 ± 0.5	7.7 ± 0.7	7.8 ± 1.2
14	5.9 ± 0.5	6.9 ± 0.1	7.5 ± 0.4
15	7.6 ± 0.4	8.3 ± 1.2	5.1 ± 3.9
16	1.9 ± 0.2	1.8 ± 0.2	8.9 ± 1.7
17	7.9 ± 0.6	1.3 ± 0.6	8.4 ± 1.1

^a 50% inhibitory concentration or compound concentration required to inhibit tumor cell proliferation by 50%.

Scheme 1. Reagents: (a) H_2 , Pd-C; (b) PhC=N=O; (c) p-NO $_2$ -C $_6H_4O_2CNHR$; (d) $ClCH_2CON=C=O$; (e) RSO_2Cl ; (f) Nal; (g) $Cl_3CON=C=O$; (h) SiOH, $MeOH/CH_2Cl_2$; (i) CF_3COCl ; (j) FCH_2COCl .

carbamylation⁸ method gave compound **12** (81%). Treatment of **12** with trifluoroacetyl chloride or monofluoroacetyl chloride gave **13a** and **13b** in 66% and 51% yields, respectively. Compound **12** could also be treated sequentially with the modified Kočovský carbamylation⁸ method to give first **14**, then **15** in 71% and 61% yields, respectively (Scheme 2). Compound **16** was also derived from **12** via treatment with chloroacetylisocyanate (69%). Treatment of **16** using Finkelstein⁷ conditions gave iodo product **17** in excellent yield (91%).⁹

Compounds 6a-c, 9a-c, 10a-b, 11a-b, 12, and 14-17 were evaluated for antiproliferative activity using murine leukemia L1210, human CD_{+}^{+} T-lymphocyte (CEM), and human cervix

Download English Version:

https://daneshyari.com/en/article/10590798

Download Persian Version:

https://daneshyari.com/article/10590798

<u>Daneshyari.com</u>