

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

CrossMark

Synthesis, binding affinity, radiolabeling, and microPET evaluation of 4-(2-substituted-4-substituted)-8-(dialkylamino)-6-methyl-1-substituted-3,4-dihydropyrido[2,3-*b*]pyrazin-2(1*H*)-ones as ligands for brain corticotropin-releasing factor type-1 (CRF₁) receptors

Jeffrey S. Stehouwer^{a,*}, Chase H. Bourke^b, Michael J. Owens^b, Ronald J. Voll^a, Clinton D. Kilts^c, Mark M. Goodman^{a,b}

^a Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA ^b Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA ^c Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA

ARTICLE INFO

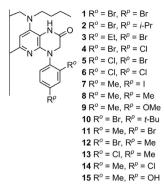
Article history: Received 13 August 2015 Revised 1 October 2015 Accepted 5 October 2015 Available online 8 October 2015

Keywords: Corticotropin-releasing factor CRF-1 receptor Fluorine-18 PET imaging Positron emission tomography

ABSTRACT

Compounds **1–14** were synthesized in a search for high-affinity CRF₁ receptor ligands that could be radiolabeled with ¹¹C or ¹⁸F for use as positron emission tomography (PET) radiotracers. Derivatives of **2** were developed which contained amide *N*-fluoroalkyl substituents. Compounds [¹⁸F]**24** and [¹⁸F]**25** were found to have appropriate lipophilicities of log $P_{7.4}$ = 2.2 but microPET imaging with [¹⁸F]**25** demonstrated limited brain uptake.

© 2015 Elsevier Ltd. All rights reserved.


The neuropeptide corticotropin-releasing factor (CRF)^{1,3} coordinates the neuroendocrine response to stress through the hypothalamic-pituitary-adrenal axis by acting on the CRF Type-1 (CRF₁) receptor.⁴ Dysregulation of brain CRF signaling has been proposed to be involved in stress, anxiety, depression, and addiction; and brain regional alterations in CRF₁ density have been detected in depressed patients and victims of suicide.^{5–8} This evidence has resulted in a more than 20-year search for small molecule, brain bioavailable CRF₁ antagonists that could be used as therapeutics for treating CRF₁-related disorders.^{9–11} Therapeutic medication development can be uniquely aided by the availability of validated positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers that can be used to both support target occupancy measurements of candidate

* Corresponding author.

E-mail address: jstehou@emory.edu (J.S. Stehouwer).

therapeutics and to explore mechanisms of pathophysiology and treatment response by measurement of receptor density and expression levels.^{12–15} Numerous attempts to develop a viable brain CRF₁ receptor PET radiotracer have been reported over the vears but no candidates to date have been successful due to problems such as high lipophilicity and inability to cross the blood-brain barrier (BBB), rapid metabolism, or insufficient specific receptor binding.^{16–19} As part of an effort to develop a viable brain CRF₁ receptor PET tracer we have been exploring various structural motifs²⁰ and report here our results with compounds 1-15 (Scheme 1), and derivatives thereof, which are based on a previous report that compounds 2, 6, and 9 displayed high binding affinity (IC₅₀ = 0.70, 0.49, and 0.92 nM, respectively) at the rat brain CRF₁ receptor.²¹ We anticipated that the reported high binding affinity of 2, 6, and 9 would enable radiotracer derivatives of this structural class to achieve specific binding at CRF1 and that the presence of the carbonyl group would enhance water solubility, thereby reducing log P and increasing BBB passage.²²⁻² Furthermore, the synthetic route for this class of compounds²¹ (Scheme S1, Supplementary material) allows the aromatic core and the N,N-dialkyl group to be held constant while the

Abbreviations: CRF, corticotropin-releasing factor; CRF₁, CRF type-1 receptor; PET, positron emission tomography; SPECT, single-photon emission computed tomography; BBB, blood-brain barrier; DMA, dimethylacetamide; SUV, standard uptake value; TACs, time-activity curves; CPCU, chemical processing control unit; rcy, radiochemical yield; EOB, end-of-bombardment.

Scheme 1.

2,4-substituted pendant aryl ring is varied to produce a library of high-affinity candidates that are amenable to radiolabeling with $^{11}\mathrm{C}$ or $^{18}\mathrm{F}.$

The binding affinities of compounds 1–14 at the CRF₁ and CRF₂ receptors were determined by in vitro competition binding assays at 23 °C using HEK293T cells transfected with the human CRF₁ or CRF₂ receptor (Table 1). Compounds 1–14 all bound to the CRF₁ receptor with high affinity ($K_i = \sim 1.3 - 5.4$ nM). Thus, although these compounds have various combinations of substituents on the pendant aryl ring, they all have binding affinities within a narrow range that differs by \sim 4 nM. The difference in affinities of **2**, **6**, and **9** between our results and the previously reported results²¹ is presumably due to the difference between human and rat CRF₁ receptors as well as the fact that we are reporting K_i values and the previous work reported IC₅₀ values. Sauvagine and R121919²⁶ were used as positive controls in our assays: R121919 was found to have an affinity of $K_i = 2.6 \pm 0.4$ nM for the CRF₁ receptor which is comparable to the previously reported values of $K_i = 3.5 \text{ nM}^{26}$ and $K_i = 3.0 \pm 0.16$ nM;²⁷ and sauvagine was found to have an affinity of $K_i = 0.8 \pm 0.1$ nM which is in agreement with the previously reported value of $K_i = 0.8-1$ nM.²⁸ The competing radioligand for these studies, [¹²⁵I]-Tyr⁰-sauvagine, has a reported affinity of 0.2–0.4 nM for the CRF₁ receptor.²⁸ Compounds 1–3, 6, and 8–12

Table 1

Results of in vitro competition binding assays at 23 $^{\circ}$ C using transfected human CRF₁ and CRF₂ receptors in HEK293T cells

Compd	\mathbb{R}^{o}	\mathbb{R}^p	CRF1		CRF ₂	
			K _i (nM) ± SEM ^a	n=	% Displacement ^b	n=
1	Br	Br	1.3 ± 0.3	3	9.4 ± 2.3	2
2	Br	<i>i</i> -Pr	2.4 ± 0.2	3	0.7 ± 3.3	2
3	Et	Br	2.5 ± 0.7	6	2.1 ± 2.5	2
4	Br	Cl	2.5 ± 0.2	3	N/D	N/A
5	Cl	Br	2.7 ± 0.4	3	N/D	N/A
6	Cl	Cl	3.4 ± 0.4	3	0.9 ± 3.4	2
7	Me	I	3.4 ± 0.6	3	N/D	N/A
8	Me	Me	3.9 ± 1.2	3	6.8 ± 1.4	2
9	Me	OMe	4.0 ± 0.6	3	-2.3 ± 3.2	2
10	Br	t-Bu	4.2 ± 2.2	3	-3.8 ± 0.5	2
11	Me	Br	4.4 ± 0.9	3	5.9 ± 0.7	2
12	Br	Me	4.4 ± 1.1	3	5.5 ± 4.9	2
13	Cl	Me	4.4 ± 0.4	3	N/D	N/A
14	Me	Cl	5.4 ± 0.9	3	N/D	N/A
R121919	N/A	N/A	2.6 ± 0.4	9	23.8 ± 0.3	2
Sauvagine	N/A	N/A	0.8 ± 0.1	9	100.0 ± 0.0	2
Antisauvagine- 30	N/A	N/A	N/D	N/A	99.0 ± 0.6	2

N/D = not determined. N/A = not applicable.

^a Versus [¹²⁵I]-Tyr⁰-sauvagine.²⁸

 b Mean% displacement of radiotracer ([1251]antisauvagine-30) 29 specific binding at CRF2 receptors by 1 μM of competing ligand.

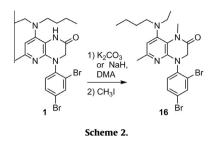
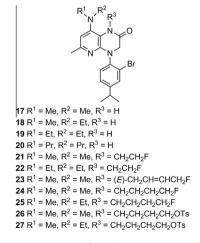


Table 2


Results of in vitro competition binding assays at 23 $^\circ\text{C}$ using transfected human CRF1 receptor in HEK293T cells

Compd	R^o	\mathbb{R}^{p}	\mathbb{R}^1	\mathbb{R}^2	R ³	K_{i} (nM) ± SEM ^a	n=
16	Br	Br	Bu	Et	Me	2.4 ± 0.6	2
17	Br	<i>i</i> -Pr	Me	Me	Н	180 ± 5	2
18	Br	<i>i</i> -Pr	Me	Et	Н	16.4 ± 1.6	3
20	Br	<i>i</i> -Pr	Pr	Pr	Н	3.1 ± 0.3	3
21	Br	i-Pr	Me	Me	CH ₂ CH ₂ F	59 ± 9	3
22	Br	i-Pr	Et	Et	CH ₂ CH ₂ F	7.3 ± 0.7	3
23	Br	<i>i</i> -Pr	Me	Me	(E)-CH ₂ CH = CHCH ₂ F	14.2 ± 2.9	3
24	Br	<i>i</i> -Pr	Me	Me	CH ₂ CH ₂ CH ₂ CH ₂ F	21.6 ± 2.8	3
25	Br	i-Pr	Me	Et	CH ₂ CH ₂ CH ₂ CH ₂ F	13.9 ± 1.9	3

^a Versus [¹²⁵I]-Tyr⁰-sauvagine.²⁸

did not display binding affinity at the CRF_2 receptor (they were unable to significantly displace [¹²⁵I]antisauvagine-30),²⁹ thus demonstrating selectivity for the CRF_1 receptor and so further screening of compounds **4**, **5**, **7**, **13**, and **14** at the CRF_2 receptor was not performed.

Compound **1** was found to have the highest binding affinity for the CRF₁ receptor followed by compounds **2–5**, but these compounds do not have a position available for radiolabeling with ¹¹C or ¹⁸F. Thus, we shifted our focus to derivatives that could potentially be radiolabeled on the amide nitrogen atom. Compound **16** (Scheme 2) was prepared by amide N-methylation of **1** with CH₃I. This resulted in only a small decrease in CRF₁ binding affinity (Table 2) relative to **1** (Table 1). Compounds **17–20** (Scheme 3) were synthesized (Scheme S2, Supplementary material) to be used as intermediates in the synthesis of amide *N*-fluoroalkyl target compounds. The shorter *N*,*N*-dialkyl chains of **17–19** were expected to compensate for the increased lipophilicity that would result from adding alkyl groups to the amide nitrogen atom, while **20** was included to evaluate the effect on binding affinity of rearranging

Scheme 3.

Download English Version:

https://daneshyari.com/en/article/10590829

Download Persian Version:

https://daneshyari.com/article/10590829

Daneshyari.com