ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Improved inhibitory activities against tumor-cell migration and invasion by 15-benzylidene substitution derivatives of andrographolide

Zhen-Wei Wu^a, Hai-Wei Xu^b, Gui-Fu Dai^{a,c,*}, Meng-Jiao Liu^a, Li-Ping Zhu^a, Jian Wu^a, Ya-Nan Wang^a, Feng-Juan Wu^a, Dan Zhao^a, Ming-Fu Gao^a, Shan-Shan Nie^a, Wei Han^a, Jing-Hui Song^a, Hong-Min Liu^{b,*}

- ^a Department of Biotechnology, Zhengzhou University, Zhengzhou 450001, PR China
- ^b New Drug Research & Development Center, Zhengzhou University, Zhengzhou 450001, PR China
- ^cHenan Key Laboratory of Functional Biomacromolecules, Zhengzhou University, Zhengzhou 450001, PR China

ARTICLE INFO

Article history:
Received 22 May 2013
Revised 28 August 2013
Accepted 17 September 2013
Available online 25 September 2013

Keywords: Migration Invasion Andrographolide Derivative MMP-9

ABSTRACT

In the present study, andrographolide (Andro, 1) derivatives were screened to identify potent inhibitors against tumor-cell migration and invasion, and associated structure–activity relationships were studied. Compared to 1, compounds 8a–8d exhibited more potent activities against migration in SGC-7901, PC-3, A549, HT-29 and Ec109 cell lines. Improved activities against tumor-cell migration and invasion were proved to be associated with the down-regulation of MMPs.

© 2013 Elsevier Ltd. All rights reserved.

Andrographolide (Andro, 1) is a major active diterpenoid lactone of *Andrographis paniculata* that has been extensively used in traditional medicines of China, India and other Asian countries. ^{1a,b} This compound has been reported to have multiple pharmacological properties and has been widely used in clinical treatments for fever, cold, inflammation, diarrhea and other infectious diseases. ^{2a-e} Recent studies have suggested that Andro is an interesting pharmacophore with anti-cancer activity. ^{3a,b} The cytotoxicity of Andro has been mainly attributed to its ability to induce cell-cycle arrest and trigger apoptosis in human cancer cells. ^{4a-e} Therefore, it has the potential to be developed as a chemotherapeutic agent against cancer, and various semi-synthetic analogues are being developed and evaluated in order to increase this agent's cytotoxicity to tumor cells. ^{5a-f}

Some studies have indicated that Andro derivatives with ester side chain(s) at C-14 and/or C-3 and C-19 exhibit improved cytotoxicities compared to the parent molecule. B. Recent studies have reported the effectiveness of Andro against migration and invasion in human non-small-cell lung cancer A549 and colorectal

carcinomal Lovo cells. This effect has been associated with down-regulation of matrix metalloproteinase (MMP)-7 and inhibition of MMP-2 activity. ^{6a,b} Hence, we are interested in developing Andro-based anti-invasive and anti-metastatic agents. To the best of our knowledge, to date, there have been no attempts to improve the inhibitory activities of Andro against tumor-cell migration and invasion.

Previous studies in this research laboratory designed and synthesized Andro analogues and investigated their α -glucosidase inhibitory activities and cytotoxicities against tumor cells. Ta-c In the present study, the inhibitory effects of Andro and its derivatives (Scheme 1), which were first reported for compounds 3, 8e and 9a, were evaluated with regard to tumor-cell migration, and associated structure–activity relationships were analyzed. Furthermore, the invasive abilities as well as mRNA and protein expression levels of MMP-9, -7 and -2 in human gastric carcinoma SGC-7901 cells treated with compound 8b were explored and compared to Andro.

As shown in Table 1, bioactivity evaluation results indicated that, at its maximal noncytotoxic concentration 2.5 μ M, Andro had no obvious inhibitory effects on migration in human bladder carcinoma 5637 cells, while at 5.0 μ M, it inhibited the cell migration as well as the cell proliferation; whereas Andro at 10.0 μ M,

^{*} Corresponding authors. Tel.: $+86\ 371\ 67767604$; fax: $+86\ 371\ 67783235$ (G.-F.D.).

E-mail addresses: daiguifu@zzu.edu.cn (G.-F. Dai), liuhm@public.zz.ha.cn (H.-M. Liu)

Scheme 1. Synthesis of compounds **2–6** and **8–9**. Reagents and conditions: (a) THF, H_2SO_4 , paraform, refluxing, 1 h; (b) m-CPBA, CHCl₃, refluxing, 2 h; (c) pyridine, Al_2O_3 , refluxing, 6 h; (d) (i) acetone, p-TsOH, 2, 2-dimethoxy propane, refluxing, 10 h, (ii) m-CPBA, CHCl₃, refluxing, 2 h; (e) aldehydes, Na_2CO_3 , methanol, refluxing, 3–5 h; (f) CHCl₃, nicotinic chloride, Et_3N , refluxing, 3 h; (g) CHCl₃, succinic anhydride (**9a**) or nicotinic chloride (**9b**), Et_3N , refluxing, 3 h.

noncytotoxic concentration, demonstrated 20.8% inhibition against SGC-7901 cells. Sa,b On the other hand, Andro had no remarkable effects on either migration or proliferation in human prostate carcinoma PC-3 cells. To determine if improvements in bioactivity could be achieved by modifying Andro at the C-3 and C-19 hydroxyls and by epoxidizing the exocyclic double bond ($\triangle^{(8,17)}$), compounds **2** and **3** were synthesized and evaluated. However, satisfactory results were not obtained, although the migration

inhibition on 5637 cells treated with **2** was slightly stronger than the proliferation inhibition.

To evaluate the activity-related effects of the allylic hydroxyl at C-14 and the conjugated double bond, we appraised the antimigratory effects of 14-deoxy-11,12-didehydroandrographolide (4), in which the exocyclic double bond ($\triangle^{(12,13)}$) was isomerized to the endocyclic double bond and the C-14 hydroxyl was simultaneously removed. The inhibition of migration in 5637 cells by compound 4 was obviously and remarkably stronger than that obtained with Andro, whereas the cytotoxicity of compound 4 was greatly decreased compared to Andro (Table 1).

Compound **5**, which was synthesized by epoxidizing the exocyclic double bond $(\triangle^{(8,17)})$ of compound **4**, did not show significantly enhanced bioactivity compared to compound **4**. Similar results were observed in the case of compound **6**, the 3,19-dinicotinate derivative of compound **4**.

Compound **7** (Yanhuning), the 3,19-disuccinate derivative of **4** (in which the molecular structure at C-3 and C-19 is similar to **6**) has been widely used in clinical studies. However, Yanhuning (**7**) observed no inhibitory effects on 5637 cell migration, implying that no considerable improvements in activity result from converting compound **4** to its epoxide at C-8 (**5**) or to its esters at C-3 and C-19 (**6**,**7**).

Interestingly, 15-benzylidene substitution analogues (**8a–8e**) of **4** demonstrated greater potency compared to compound **4** as well as their parent compound Andro. Compound **8a** was effective against all three cell lines (Table 1), whereas **8b–8e** potently inhibited the migration of SGC-7901 (as shown in Table 1 and Fig. 1B) and PC-3 cells but did not significantly inhibit 5637 cells at $5.0\,\mu\text{M}$, the minimum effective concentration for cell migration. Compound **8b** was the most potent against migration in SGC-7901 cells and was followed by **8d** and **8e**. Compounds **8b–8e** were more cytotoxic to 5637 than to other cell lines.

Moreover, compounds **9a** and **9b**, the 3,19-disuccinate and the 3,19-dinicotinate of compound **8b**, respectively, were synthesized and evaluated biologically. The results revealed inhibitory activity against migration of 5637, SGC-7901 and PC-3 cells that was lost when **8b** was converted to **9a**. Contrarily, when **8b** was converted to **9b**, the activity against 5637 improved significantly, while activities against SGC-7901 and PC-3 were lowered.

Furthermore, the anti-migration activities of compounds **8a–8d** against A549, human esophageal carcinoma Ec109 and human colon cancer HT-29 cells were investigated (Table 2). All of these demonstrated improved activities (compared to Andro) against all cell lines tested.

To better understand its value as an anti-metastasis agent or as a lead compound, the anti-invasive effect of **8b** on SGC-7901 cells was further appraised via matrigel invasion assay and compared with that of Andro, as shown in Figure 1(C and D). Compared to control, Andro (5.0–10.0 μ M; P <0.05) and **8b** (2.5–10.0 μ M; P <0.01) significantly diminished the number of membrane-associated cells. The inhibitory activity of **8b** against the invasive ability of SGC-7901, for which an IC₅₀ value of 4.6 μ M was obtained, was much more potent than that of Andro, which only caused 17.7% inhibition at 10.0 μ M.

Considering the importance of matrix metalloproteinases (MMPs) to tumor-cell migration, invasion and metastasis, we studied the effects of Andro and **8b** on mRNA expression levels of MMP-7, MMP-2 and MMP-9 in SGC-7901 cells using a semi-quantitative RT-PCR method. As shown in Figure 2, Andro decreased the MMP-7 mRNA expression levels in a dose-dependent manner ranging from 2.5 to 10.0 μ M (P <0.01); whereas even at concentrations as high as 10.0 μ M, Andro did not alter MMP-2 mRNA expression levels but slightly lowered MMP-9 expression levels (P <0.05). Compared with Andro, compound **8b**, at concentrations as low as 1.25 μ M, could significantly down-regulate the mRNA expression

Download English Version:

https://daneshyari.com/en/article/10591325

Download Persian Version:

https://daneshyari.com/article/10591325

<u>Daneshyari.com</u>