Bioorganic & Medicinal Chemistry Letters 25 (2015) 175-178

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Development of photo-controllable hydrogen sulfide donor applicable in live cells

CrossMark

Naoki Fukushima^a, Naoya Ieda^a, Mitsuyasu Kawaguchi^a, Kiyoshi Sasakura^b, Tetsuo Nagano^b, Kenjiro Hanaoka^b, Naoki Miyata^a, Hidehiko Nakagawa^{a,*}

^a Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya-shi, Aichi 467-8603, Japan ^b Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

ARTICLE INFO

Article history: Received 7 November 2014 Revised 27 November 2014 Accepted 29 November 2014 Available online 8 December 2014

Keywords: Hydrogen sulfide Caged H₂S Photolabile protecting group Xanthone photocage

ABSTRACT

Hydrogen sulfide (H_2S) has multiple physiological roles, for example, in vasodilation and inflammation. It is a highly reactive gas under ambient conditions, so controllable H_2S donors are required for studying its biological functions. Here, we describe the design, synthesis and application of a H_2S donor (SPD-2) that utilizes xanthone photochemistry to control H_2S release. H_2S generation from SPD-2 was completely dependent on UVA-irradiation (325–385 nm), as confirmed by methylene blue assay and by the use of a H_2S -selective fluorescent probe. SPD-2 was confirmed to provide controlled H_2S delivery in live cells, and should be suitable for various biological applications.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Hydrogen sulfide (H₂S), like nitric oxide (NO) and carbon monoxide (CO), is a gaseous physiological signal transmitter¹ that has roles in multiple processes, including vascular smooth muscle relaxation,² neurotransmission³ and regulation of inflammation.⁴ It is biologically synthesized from L-cysteine and/or L-homocysteine by cystathionine- β -synthase (CBS),⁵ cystathionine- γ -lyase (CSE)⁶ and 3-mercaptopyruvate sulfur transferase (3MST) coupled with cysteine aminotransferase (CAT).⁷ Recently, a novel H₂S biosynthetic pathway from D-cysteine, involving 3-MST and D-amino acid oxidase (DAO), has also been reported.⁸ These enzymes have been demonstrated to influence a wide range of physiological and pathological processes.^{9,10}

In biological research on H_2S , inorganic sulfide salts, such as Na_2S and NaSH have been widely used as H_2S sources. However, these sources have substantial disadvantages for examination of the physiological functions of H_2S . For example, H_2S generation is very fast, and precise control of the release rate and dosage is not feasible. These compounds cannot mimic biological H_2S release, which is thought to be relatively slow and continuous. Therefore, controllable H_2S donors are required for detailed investigation of the physiological functions of H_2S and for potential therapeutic applications. We focused on photocontrollable H_2S donors, since photolysis-induced H_2S release has the potential to allow precise control of the location, timing and dosage of release.

Some photolysis-inducing H₂S donors, based on geminal-dithiol structure, have already been reported.¹¹ However, it is difficult to control the rate of H₂S release from these donors because the formation of H₂S depends on hydrolysis of geminal dithiol in aqueous media. Recently, we have reported a H₂S derivative doubly protected with a photolabile protecting group (PPG) as a photo-activatable H₂S donor,¹² based on ketoprofenate PPG¹³ which has good light-responsiveness (SPD-1, Scheme 1a). Ketoprofenate

Scheme 1. Structures and photoreactions of SPD-1 and SPD-2.

http://dx.doi.org/10.1016/j.bmcl.2014.11.084

* Corresponding author.

0960-894X/© 2014 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Scheme 2. Synthesis of SPD-2. Reagents and conditions: (a) 2-iodobenzoic acid, Cs₂CO₃, CuCl, TDA-1, dioxane; (b) H₂SO₄, 85 °C, 2 steps 52%; (c) H₂SO₄, MeOH, 96%; (d) paraformaldehyde, K₂CO₃, DMSO, 56%; (e) MsCl, NEt₃, CH₂Cl₂, quant.; (f) LiBr, MeCN, 36%; (g) sodium sulfide nonahydrate, toluene, H₂O, C₁₆H₃₃(C₄H₉)₃P⁺Br⁻, 46%; (h) LiOH, THF, H₂O, MeOH, 84%. TDA-1 = tris[2-(2-methoxyethoxy)ethyl]amine, DMSO = dimethylsulfoxide, MsCl = methanesulfonyl chloride, THF = tetrahydrofuran.

Figure 1. Release of H₂S from SPD-2 (100 μ M) in PBS, pH 7.4, with 1% DMSO as detected by the methylene blue method. Formation of methylene blue after irradiation of SPD-2 for various times was determined from the absorbance at 671 nm. Photoirradiation was performed at 325–385 nm and the light intensity was set at 2.0 mW/cm². The data represent the average of three independent experiments with standard deviations.

PPG has many advantageous features, such as good water solubility, formation of benign photo-products and a higher release rate than o-nitrobenzyl PPG,¹⁴ the most widely used PPG. However, SPD-1 shows maximum absorbance at 260 nm (Fig. S1b), and consequently the efficiency of H₂S release from SPD-1 is insufficient for application in living cells when UV-A (330-380 nm), widely equipped in some microscopies, is utilized as an uncaging light source. Therefore, we set out to design a new photo-induced H₂S donor suitable for cellular application. Recently, xanthone PPGs have been reported as next-generation carbanion-mediated PPGs¹⁵ with excellent absorption in the UVA region (>320 nm). We designed a novel photo-controllable H₂S donor, SPD-2, by utilizing xanthone PPG to protect H₂S directly (Scheme 1b). SPD-2 showed superior photochemical properties to the ketoprofenate-type H₂S donor, and we confirmed that it is available for photo-controlled, site-specific H₂S release in live cells.

Figure 2. Fluorescence measurement for detection of H_2S generation using HSip-1. The concentration of SPD-2 was 100 μ M and that of HSip-1 was 1 μ M in phosphate buffer, pH 7.4, containing 1% DMSO. Fluorescence emission was measured at 516 nm with excitation at 491 nm. Measurements were made after incubation of HSip-1: (a) without SPD-2 or irradiation; (b) with SPD-2 but without irradiation; (c) without SPD-2 after irradiation for 300 s; (d) with SPD-2 after irradiation for 300 seconds. Photoirradiation was performed at 325–385 nm and the light intensity was set at 2.0 mW/cm². The data represent the average of three independent experiments with standard deviations.

SPD-2 was synthesized as shown in Scheme 2. Preparation of the synthetic intermediate was performed as described previously.¹⁵ Xanthone derivative **5** was prepared by Ullmann condensation of *o*-iodobenzoic acid and 2-(4-hydroxyphenyl)propanoic acid (**3**), followed by acid-catalyzed Friedel–Crafts type reaction. After esterification of **5**, hydroxymethylation by treatment with paraformaldehyde and K_2CO_3 gave the desired alcohol **7**. This was mesylated to obtain **8**, which was converted to the brominated derivative **9**. Then, sulfide **10** was synthesized by using sodium sulfide nonahydrate. In this reaction, 2-(prop-1-en-2-yl)-9*H*-xanthen-9-one (Scheme 1b, the proposed photoproduct **2**) was obtained as a by-product, and this was isolated for structural confirmation of the photo-product of SPD-2. Finally, hydrolysis gave the desired product SPD-2. The structure and purity of SPD-2 were confirmed by ¹H NMR, ¹³C NMR, mass spectrometry and elemental analysis. Download English Version:

https://daneshyari.com/en/article/10591383

Download Persian Version:

https://daneshyari.com/article/10591383

Daneshyari.com