Bioorganic & Medicinal Chemistry Letters 23 (2013) 4230-4234

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and biological evaluation of pyrrolidine derivatives as novel and potent sodium channel blockers for the treatment of ischemic stroke

Maki Seki*, Osamu Tsuruta, Ryo Tatsumi, Aki Soejima

Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan

ARTICLE INFO

Article history: Received 28 February 2013 Revised 2 May 2013 Accepted 5 May 2013 Available online 14 May 2013

Keywords: Sodium channel blocker Ischemic stroke Neuroprotection hERG Pyrrolidine

ABSTRACT

A novel series of pyrrolidine derivatives as Na⁺ channel blockers was synthesized and evaluated for their inhibitory effects on neuronal Na⁺ channels. Structure–activity relationship (SAR) studies of a pyrrolidine analogue **2** led to the discovery of **5e** as a potent Na⁺ channel blocker with a low inhibitory action against human ether-a-go-go-related gene (hERG) channels. Compound **5e** showed remarkably neuroprotective activity in a rat transient middle cerebral artery occlusion (MCAO) model, suggesting that **5e** would act as a neuroprotectant for ischemic stroke.

© 2013 Elsevier Ltd. All rights reserved.

Ischemic stroke is a leading cause of death and long-lasting disability in developed countries. Neuroprotection is widely recognized to be a potential strategy for the treatment of ischemic stroke,¹ and considerable efforts have been devoted to the development of neuroprotective agents, such as *N*-methyl-p-aspartate (NMDA) receptor antagonists, α -amino-5-hydroxy-3-methyl-4isoxazole propionic acid (AMPA) receptor antagonists, and Ca²⁺ channel blockers.² However, none of them has been approved for the treatment of ischemic stroke because of their limited efficacy or unfavorable risk-benefit ratio in clinical trials.³

As an alternative neuroprotectant, Na⁺ channel blockers have been reported (Fig. 1).⁴ Although several Na⁺ channel blockers have been tested in clinical trials, some of them were unsuccessful because of their limited efficacy⁵ and/or adverse effects such as heart-conduction disorders, QT prolongation,⁶ which was caused by blocking of hERG K⁺ channels.⁷ Indeed, enecadin,^{4c} crobenetine,^{4d} SUN N8075,^{4e} and our previous lead **1**^{4f} displayed the potential risk of QT prolongation.⁸ Therefore, potent Na⁺ channel blockers with a low risk of QT prolongation are strongly desired. In the course of our study to develop Na⁺ channel blockers, we became interested in a novel pyrrolidine analogue **2** as a tractable lead having low molecular weight and three sites available for derivatization (Fig. 2). Here, we describe synthesis and biological evaluation of a series of novel pyrrolidine derivatives.

Figure 1. Reported sodium channel blockers.

Scheme 1 illustrates the synthesis of 4-phenylpyrrolidines **5a–e** and **6**. All compounds were prepared as racemates. Stereospecific [3+2]-cycloaddition of *trans*-1-nitro-2-phenylethylene and *N*-(methoxymethyl)-*N*-[(trimethylsilyl)methyl]benzylamine, an azomethine ylide equivalent, afforded *trans*-3-nitropyrrolidine **3** in a

^{*} Corresponding author. Tel.: +81 45 963 7239; fax: +81 45 963 7257. *E-mail address*: Seki.Maki@ma.mt-pharma.co.jp (M. Seki).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2013.05.009

Figure 2. Our new pyrrolidine analogue 2.

Scheme 1. Reagents and conditions: (a) trifluoroacetic acid, CH₂Cl₂ (62%); (b) (i) Fe, acetic acid, 2-PrOH/H₂O, 80 °C, (ii) 4 N HCl/EtOAc, EtOAc (90%); (c) (i) benzoyl chloride or cyclohexanecarbonyl chloride, Et₃N, CH₂Cl₂, (ii) BH₃-THF, THF, reflux, (iii) 4 N HCl/EtOAc, EtOAc (35–62%); (d) (i) cyclohexanone, NaBH(OAc)₃, acetic acid, acetonitrile, (ii) 4 N HCl/EtOAc, EtOAc (65%); (e) (i) iodobenzene, Cul, K₃PO₄, ethylene glycol, 80 °C, (ii) 4 N HCl/EtOAc, EtOAc (35%).

Table 1

Inhibition of Na⁺ and hERG channels of 4-phenylpyrrolidines **5a-e** and **6**^a

Compound	\mathbb{R}^1	Anti-veratridine ^b IC_{50} (µM)	hERG ^c (% inhibition, 1 μ M)
5a		1.90	45
5b	*	0.64	57
5c		0.48	31
5d	*	0.32	60
5e		0.51	8.4
6	*	0.48	43

^a All compounds are racemic and were tested using the hydrochlorides or dihydrochlorides except **5a** and **5c**.

^b Inhibitory activity on veratridine-induced depolarization in rat cerebrocortical synaptosomes using voltage-sensitive dye Rhodamine 6G.¹⁰

^c Inhibition rates were determined by a voltage patch clamp technique using HEK293 cells expressing hERG channels.

moderate yield.⁹ The nitro group of **3** was reduced with iron and acetic acid to give **4**, which was then converted into 3-amidopyrrolidines **5a** and **5c** by acylation with the corresponding acid chlorides. Reduction of the amide group of **5a** and **5c** yielded 3-aminopyrrolidines **5b** and **5d**, respectively, and reductive alkyl-

ation of **4** with cyclohexanone provided **5e**. Compound **6** was obtained by copper-catalyzed coupling of **4** and iodobenzene.

The effects of 5a-e and 6 on Na⁺ channels were evaluated by inhibitory action on veratridine-induced depolarization in rat cerebrocortical synaptosomes (Table 1).¹⁰ Compounds **5c** and **5d**

Download English Version:

https://daneshyari.com/en/article/10591518

Download Persian Version:

https://daneshyari.com/article/10591518

Daneshyari.com