Synthesis and biological evaluation of pyrrolidine derivatives as novel and potent sodium channel blockers for the treatment of ischemic stroke

Maki Seki *, Osamu Tsuruta, Ryo Tatsumi, Aki Soejima
Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan

A R T I C L E I N F O

Article history:

Received 28 February 2013
Revised 2 May 2013
Accepted 5 May 2013
Available online 14 May 2013

Keywords

Sodium channel blocker
Ischemic stroke
Neuroprotection
hERG
Pyrrolidine

Abstract

A novel series of pyrrolidine derivatives as Na^{+}channel blockers was synthesized and evaluated for their inhibitory effects on neuronal Na^{+}channels. Structure-activity relationship (SAR) studies of a pyrrolidine analogue $\mathbf{2}$ led to the discovery of $\mathbf{5 e}$ as a potent Na^{+}channel blocker with a low inhibitory action against human ether-a-go-go-related gene (hERG) channels. Compound $\mathbf{5 e}$ showed remarkably neuroprotective activity in a rat transient middle cerebral artery occlusion (MCAO) model, suggesting that $\mathbf{5 e}$ would act as a neuroprotectant for ischemic stroke.

© 2013 Elsevier Ltd. All rights reserved.

Ischemic stroke is a leading cause of death and long-lasting disability in developed countries. Neuroprotection is widely recognized to be a potential strategy for the treatment of ischemic stroke, ${ }^{1}$ and considerable efforts have been devoted to the development of neuroprotective agents, such as N-methyl-D-aspartate (NMDA) receptor antagonists, α-amino-5-hydroxy-3-methyl-4isoxazole propionic acid (AMPA) receptor antagonists, and Ca^{2+} channel blockers. ${ }^{2}$ However, none of them has been approved for the treatment of ischemic stroke because of their limited efficacy or unfavorable risk-benefit ratio in clinical trials. ${ }^{3}$

As an alternative neuroprotectant, Na^{+}channel blockers have been reported (Fig. 1). ${ }^{4}$ Although several Na^{+}channel blockers have been tested in clinical trials, some of them were unsuccessful because of their limited efficacy ${ }^{5}$ and/or adverse effects such as heart-conduction disorders, QT prolongation, ${ }^{6}$ which was caused by blocking of hERG K^{+}channels. ${ }^{7}$ Indeed, enecadin, ${ }^{4 \mathrm{c}}$ crobenetine, ${ }^{4 \mathrm{~d}}$ SUN N8075, ${ }^{4 \mathrm{e}}$ and our previous lead $\mathbf{1}^{4 \mathrm{f}}$ displayed the potential risk of QT prolongation. ${ }^{8}$ Therefore, potent Na^{+}channel blockers with a low risk of QT prolongation are strongly desired. In the course of our study to develop Na^{+}channel blockers, we became interested in a novel pyrrolidine analogue $\mathbf{2}$ as a tractable lead having low molecular weight and three sites available for derivatization (Fig. 2). Here, we describe synthesis and biological evaluation of a series of novel pyrrolidine derivatives.

[^0]

Figure 1. Reported sodium channel blockers.

Scheme 1 illustrates the synthesis of 4-phenylpyrrolidines 5a-e and 6. All compounds were prepared as racemates. Stereospecific [3+2]-cycloaddition of trans-1-nitro-2-phenylethylene and N -(methoxymethyl)- N -[(trimethylsilyl)methyl]benzylamine, an azomethine ylide equivalent, afforded trans-3-nitropyrrolidine $\mathbf{3}$ in a

2
Figure 2. Our new pyrrolidine analogue 2.

Scheme 1. Reagents and conditions: (a) trifluoroacetic acid, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (62%); (b) (i) Fe , acetic acid, 2- $\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$, (ii) $4 \mathrm{~N} \mathrm{HCl} / \mathrm{EtOAc}$, EtOAc (90%); (c) (i) benzoyl chloride or cyclohexanecarbonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ii) $\mathrm{BH}_{3} \cdot \mathrm{THF}, \mathrm{THF}$, reflux, (iii) $4 \mathrm{~N} \mathrm{HCl} / \mathrm{EtOAc}$, $\mathrm{EtOAc}\left(35-62 \%\right.$); (d) (i) cyclohexanone, $\mathrm{NaBH}(\mathrm{OAc})_{3}$, acetic acid, acetonitrile, (ii) 4 N $\mathrm{HCl} / \mathrm{EtOAc}, \mathrm{EtOAc}(65 \%)$; (e) (i) iodobenzene, CuI, $\mathrm{K}_{3} \mathrm{PO}_{4}$, ethylene glycol, $80^{\circ} \mathrm{C}$, (ii) $4 \mathrm{~N} \mathrm{HCl} / \mathrm{EtOAc}, \mathrm{EtOAc}(35 \%)$.

Table 1
Inhibition of Na^{+}and hERG channels of 4-phenylpyrrolidines $\mathbf{5 a - e}$ and $\mathbf{6}^{\mathbf{a}}$

Compound	R^{1}	Anti-veratridine ${ }^{\mathrm{b}} \mathrm{IC}_{50}(\mu \mathrm{M})$	$\mathrm{hERG}^{\mathrm{c}}$ (\% inhibition, $1 \mu \mathrm{M}$)
5a		1.90	45
5b		0.64	57
5c		0.48	31
5d		0.32	60
5e		0.51	8.4
6		0.48	43

${ }^{\text {a }}$ All compounds are racemic and were tested using the hydrochlorides or dihydrochlorides except 5a and 5c.
${ }^{\mathrm{b}}$ Inhibitory activity on veratridine-induced depolarization in rat cerebrocortical synaptosomes using voltage-sensitive dye Rhodamine 6G. ${ }^{10}$
${ }^{\text {c }}$ Inhibition rates were determined by a voltage patch clamp technique using HEK293 cells expressing hERG channels.
moderate yield. ${ }^{9}$ The nitro group of $\mathbf{3}$ was reduced with iron and acetic acid to give 4 , which was then converted into 3 -amidopyrrolidines $5 \mathbf{a}$ and $5 \mathbf{c}$ by acylation with the corresponding acid chlorides. Reduction of the amide group of $\mathbf{5 a}$ and $\mathbf{5 c}$ yielded 3aminopyrrolidines $\mathbf{5 b}$ and $\mathbf{5 d}$, respectively, and reductive alkyl-
ation of $\mathbf{4}$ with cyclohexanone provided $\mathbf{5 e}$. Compound $\mathbf{6}$ was obtained by copper-catalyzed coupling of 4 and iodobenzene.

The effects of $5 \mathbf{5 a - e}$ and $\mathbf{6}$ on Na^{+}channels were evaluated by inhibitory action on veratridine-induced depolarization in rat cerebrocortical synaptosomes (Table 1). ${ }^{10}$ Compounds 5c and 5d

https://daneshyari.com/en/article/10591518

Download Persian Version
https://daneshyari.com/article/10591518

Daneshyari.com

[^0]: * Corresponding author. Tel.: +81 45963 7239; fax: +81 459637257.

 E-mail address: Seki.Maki@ma.mt-pharma.co.jp (M. Seki).

