Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

New antiprotozoal agents: Their synthesis and biological evaluations

Ram Shankar Upadhayaya*, Shailesh S. Dixit, Andras Földesi, Jyoti Chattopadhyaya*

Program of Chemical Biology, Institute of Cell and Molecular Biology, Biomedical Centre, Uppsala University, SE-75123 Uppsala, Sweden

ARTICLE INFO

Article history: Received 12 January 2013 Revised 8 February 2013 Accepted 12 February 2013 Available online 22 February 2013

Keywords: Antiprotozoal agents Trypanosoma Leishmania Parasite inhibitors Conformationally constrained quinoline

ABSTRACT

Here we report identification of new lead compounds based on quinoline and indenoquinolines with variable side chains as antiprotozoal agents. Quinolines **32**, **36** and **37** (Table 1) and indenoquinoline derivatives **14** and **23** (Table 2) inhibit the in vitro growth of the *Trypanosoma cruzi*, *Trypanosoma brucei*, *Trypanosoma brucei rhodesiense* subspecies and *Leishmania infantum* with IC₅₀ = 0.25 μ M. These five compounds have superior activity to that of the front-line drugs such as benznidazole, nifurtimox and comparable to amphotericin B. Thus these compounds constitute new 'leads' for further structure–activity studies as potential active antiprotozoal agents.

© 2013 Elsevier Ltd. All rights reserved.

Neglected tropical diseases $(NTD)^1$ include Chagas' disease (American trypanosomiasis²), human African trypanosomiasis HAT (sleeping sickness)³ and leishmaniasis.⁴ These are parasitic diseases caused by the parasitic protozoan's *Trypanosoma cruzi* (*T. cruzi*), *Trypanosoma brucei* (*T. brucei*) and *Leishmania* species, respectively. It is a serious health problem of today mainly in tropical countries and in Central and South American continent causing two million deaths per year.^{5,6} The present treatment is not very effective in the chronic phase and has toxicity, side effects^{7–15} and parasite resistance.^{10–12,16–21}

Thus, there is a considerable potential in developing novel approaches for antitrypanosoma and antileishmania drugs. Molecular modeling,²² enzymatic²³ and crystallographic studies²⁴ on tipifarnib (1, EC₅₀ = 4 nM, Fig. 1) and its analogues (compounds 2 and 3)^{22,25-27} have shown role of quinoline and side chain in its biological activity. In these studies, the X-ray structure of cocrystal of compound 2 with *T. brucei* CYP51, has elegantly shown that the quinolone together with its imidazole ring side chain was coordi-

nated with heme iron whereas the phenyl ring attached to quinolone occupying an additional CYP51 active-site cavity. Qunoline as a pharmacophore against T. brucei and T. cruzi is also interesting because tafenoquine (3, Fig. 1) is known to act on unique target such as cytochrome *c* reductase. As a part of our research project on antitubercular drug discovery, we have screened a library of 39 compounds based on a quinoline and indenoquinolines with various side chains for antiprotozoal activity, which have also shown anti-TB activity.²⁸⁻³² We have thus identified five compounds (14, 23, 32, 36 and 37) that have shown excellent in vitro antitrypanosomal and antileishmanial activity as low as IC_{50} = 0.25 and 0.40 μ M, respectively, which is superior to frontline drugs benznidazole³³ (IC₅₀ = 3.66 μ M), nifurtimox³⁴ (IC₅₀ = 1.8 μ M) and comparable to amphotericin B^{35} (IC₅₀ = 0.25 μ M). The diverse structures of these active compounds further suggest that both quinoline and side chain variations are important for antiprotozoal activity.

Following the literature procedures compound **6** was prepared through functionalization of 4-OH of 6-bromo-2-(trifluoromethyl)quinolin-4-ol, $\mathbf{4}^{36}$ (Scheme 1). Compound **4** was brominated by using PBr₃ in DMF to give 4,6-dibromo compound $\mathbf{5}^{37}$ which was treated with strong base LDA followed by benzaldehyde in dry THF to obtain the desired compound **6**. To achieve the target compound **9** (Scheme 2), compound $\mathbf{7}^{29}$ was treated with *m*-(trifluoromethyl) benzene sulfonyl chloride in presence of dry pyridine to give sulfonamide **8**. Carbonyl group of sulfonamide **8** was reduced by NaBH₄ to give hydroxy derivative **9**. To accomplish the synthesis of compounds **11**, **12**, **14** and **15** (Scheme 3),

Abbreviations: CC₅₀, concentration of inhibitor resulting in 50% parasite growth inhibition; DCM, dichloromethane; DMF, *N*,*N*-dimethylformamide; DMSO, dimethyl sulfoxide; EDC-HCI, 1-ethyl-3-(3-dimethyllaminopropyl)carbodiimide hydrochloride; Et₃N, triethylamine; EtOH, ethanol; MeOH, methanol; IC₅₀, concentration of inhibitor resulting in 50% inhibition; SI, Ratio of CC₅₀ value/IC₅₀; NMR, nuclear magnetic resonance; SAR, structure–activity relationship; PFT, protein farnesyl-transferase; PPA, polyphosphoric acid.

^{*} Corresponding authors. Tel.: +46 18 4714577; fax: +46 18 554495.

E-mail addresses: ram@boc.uu.se (R.S. Upadhayaya), jyoti@boc.uu.se (J. Chatto-padhyaya).

 $R = NH_2$ binds to mammalian PFT *via* farnesyl diphosphate $R = OCH_3$ binds to *T.cruzi* 14DM

1: R = NH₂, Tipifarnib (EC₅₀ = 4 nM) *T. cruzi* protein farnesyltransferase (PFT); human (hPFT IC₅₀ = 0.7 nM)

2: R = OCH₃ (EC₅₀ = 0.6 nM) *T. cruzi (PFT); human (hPFT* IC₅₀>5000 nM)

3: Tafenoquine (IC₅₀ = 5.6 μM) against *L. donovani* Target: mitochondrial dysfunction through cytochrome c reductase

Scheme 1. Reagents and conditions: (i) dry DMF, PBr3 at 0 °C then at rt, 4 h, 82%; (ii) LDA, dry THF, 30 min, PhCHO, -78 °C, 2 h, 16%.

Scheme 2. Reagents and conditions: (i) 3-(trifluoromethyl)benzene-1-sulfonyl chloride, dry pyridine, rt, 12 h, 54%; (ii) NaBH₄, EtOH-THF (2:1, 6 mL), rt, 2 h, 53%.

Scheme 3. Reagents and conditions: (i) iso-propanol, 1-benzyl piperazine for 11, 1-benzhydryl piperazine for 12, and NaN₃ for 13, reflux, 12 h, (11, 26%; 12, 27% and 13, 61%); (ii) dry THF, PPh₃, reflux, 15 h, 58%; (iii) dry DCM, 2-methoxyphenyl isocyanate, dry Et₃N, 0 °C-rt, 1 h, 9%.

Download English Version:

https://daneshyari.com/en/article/10591983

Download Persian Version:

https://daneshyari.com/article/10591983

Daneshyari.com