Bioorganic & Medicinal Chemistry Letters 26 (2016) 1919–1924

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and evaluation of (*S*)-[¹⁸F]fesetron in the rat brain as a potential PET imaging agent for serotonin 5-HT₃ receptors

Neema K. Pithia, Christopher Liang, Xiang-Zuo Pan, Min-Liang Pan, Jogeshwar Mukherjee*

Preclinical Imaging, B140 Medical Sciences, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697-5000, United States

ARTICLE INFO

Article history: Received 21 January 2016 Revised 5 March 2016 Accepted 7 March 2016 Available online 8 March 2016

Keywords: Fesetron Serotonin 5-HT₃ receptors PET Autoradiography Palonosetron Zacopride Cancer chemotherapy

ABSTRACT

Serotonin 5-HT₃ receptors are involved in various brain functions including as an emesis target during cancer chemotherapy. We report here the development of (*S*)-2,3-dimethoxy-5-(3'-[¹⁸F]fluoropropyl)-*N*-(1-azabicyclo[2.2.2]oct-3-yl)benzamide ([¹⁸F]fesetron) as a potential PET imaging agent for serotonin 5-HT₃ receptors. By radiolabeling((*S*)-2,3-dimethoxy-5-(3'-tosyloxypropyl)-*N*-(1-azabicyclo[2.2.2]oct-3-yl)benzamide) with fluorine-18, (*S*)-[¹⁸F]fesetron was obtained in 5 to 10% decay-corrected yields and with specific activities >74 GBq/µmol at the end of radiosynthesis. PET imaging in rats showed low uptake of [¹⁸F]fesetron in the brain with retention of binding in the striatal and cerebellar regions. Using colliculi as a reference region, ratios were 3.4 for striata and 2.5 for cerebellum. Ex vivo brain PET analysis displayed binding of [¹⁸F]fesetron in the highest uptake with ratio of >17 with respect to colliculi, while area postrema and striata had ratios of >10. Thus, [¹⁸F]fesetron exhibited a unique binding profile to rat brain regions known to contain significant amounts of serotonin 5-HT₃ receptors. However, the very low brain uptake limits its usefulness as a PET radiotracer in this animal model.

© 2016 Elsevier Ltd. All rights reserved.

The serotonin 5-HT₃ receptor is a ligand-gated cation channel belonging to the nicotine/gamma-aminobutyrate (GABA) receptor super-family.¹ The 5-HT₃ receptors are found in the brain mainly in presynaptic regions associated with axons and nerve terminals (70-80%). In the hippocampus, they are predominately postsynaptic receptors located on somatodendritic regions.² They have been found at many central nervous system (CNS) locations and mostly on GABAergic neurons. The 5-HT₃ receptor is involved with pain processing, integration of the vomiting reflex (emesis), sensory transmission, the reward system, often associated with dopaminergic pathways, anxiety control and gastrointestinal disorders.^{3,4} Therapeutically, antagonists have shown the most promise in chemotherapy induced nausea and vomiting (CINV). The 5-HT₃ receptor has also been investigated for its potential use in treating drug addiction.⁴ Subtypes of 5-HT₃ receptor have been reported: 5-HT_{3A}, 5-HT_{3B}, 5-HT_{3C}, 5-HT_{3D}, and 5-HT_{3E} of which the 5-HT_{3A} subtype has been reported across species.^{1,4}

Several ligands with high affinity and selectivity for the 5-HT₃ receptor, including zacopride have been reported (Fig. 1).⁵ Zacopride is a 3-aminoquinuclidinyl derivative exhibiting antiemetic effects which were found to be greater for its (*S*)-isomer.^{6–8} In

* Corresponding author. E-mail address: mukherjj@uci.edu (J. Mukherjee).

Figure 1. Chemical structures of 5-HT₃ radioligands: four radiolabeled derivatives with subnanomolar affinities for the 5-HT₃ receptor used for in vitro studies. 3-Aminoquinuclidine derivatives **1.** [³H]Zacopride, **2.** [¹²⁵I]MIZAC, and **3.** [¹²⁵I]DAIZAC. Derivative without 3-aminoquinuclidine ring, **4.** [³H]GR65630.

Figure 2. Chemical structures of 5-HT₃ ligands: the 'setron' drugs used as antiemetic agents: **5**. Ondansetron, **6**. Granisetron, and **7**. Palonosetron contains the 3-aminoquinuclidine ring structure (blue dashed box in **7**). Based on the structures of MIZAC and Palonosetron, Fesetron **8** was developed as a potential PET radiotracer for 5-HT₃ receptors and is reported in this Letter.

order to study the distribution of these receptors, [³H]zacopride,⁹ related radioiodinated derivatives, [¹²⁵I]DAIZAC¹⁰ and [¹²⁵I] MIZAC¹¹ and other compounds without the 3-aminoquinuclidinyl moiety as in [³H]GR65630¹² have been synthesized (Fig. 1). Although in vitro studies have been reported with these radioligands, no in vivo studies are available.¹⁰ Additionally, positron emission tomography (PET) imaging agents with high affinity such as [¹⁸F]MR18445¹³ and [¹¹C]MDL72222¹⁴ were not successful in vivo for selective binding to 5-HT₃ receptors.

The 'setron' drugs (defined as selective serotonin 5-HT₃ receptor antagonists) were first used because of their effects on CINV due to

high affinity for the 5-HT₃ receptor (Fig. 2). They belong to the same substance class because of their binding to the orthosteric ligand binding site on the receptor protein.¹⁵ Although only granisetron and palonosetron are selective to the 5-HT₃ receptor,^{16,17} all the setron drugs are equally capable of inhibiting Ca²⁺ influx.⁴ Palonosetron, being the 'newer' setron drug, seems to show a longer plasma half-life and a higher affinity to 5-HT₃ receptors when compared to the other setron drugs.^{16,18} Also, palonosetron has shown to be effective not only in treating acute CINV but also delayed CINV.¹⁸ Because of its apparent advantages, we took an interest in palonosetron and looked closely at its chemical

Figure 3. Synthesis of fesetron **8** and [¹⁸F]fesetron **13**. Step A: coupling of carboxylic acid **9** with amine **10** to provide the substituted amide **11** (BOP: benzotriazol-1-yloxy-tris (dimethylamino) phosphonium hexafluorophosphate; Et₃N: triethylamine; CH₃CN: acetonitrile). Step B: tosylation of alcohol **11** to the tosylate **12** (TsCI: *p*-toluenesulfonyl chloride; CH₂Cl₂: dichloromethane). Step C: nucleophilic displacement of tosylate with fluoride to provide fesetron **8** (Bu₄NF: tetrabutylammonium fluoride; THF: tetrahydrofuran). Step D: radiolabeling of tosylate **12** with K[¹⁸F]Kryptofix in CH₃CN to provide [¹⁸F]fesetron which was purified by HPLC.

Download English Version:

https://daneshyari.com/en/article/10592024

Download Persian Version:

https://daneshyari.com/article/10592024

Daneshyari.com