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a b s t r a c t

Synthetic limitations in the copper-catalyzed azide alkyne cycloaddition (CuAAC) on gossypol’s skeleton
functionalized with alkyne (2) or azide (3) groups have been indicated. Modified approach to the synthe-
sis of new gossypol–triazole conjugates yielded new compounds (24–31) being potential fungicides.
Spectroscopic studies of triazole conjugates 24–31 have revealed their structures in solution, i.e., the
presence of enamine–enamine tautomeric forms and p–p stacking intramolecular interactions between
triazole arms. Biological evaluation of the new gossypol–triazole conjugates revealed the potency of 30
and 31 derivatives, having triazole–benzyloxy moieties, comparable with that of miconazole against
Fusarium oxysporum. The results of HPLC evaluation of ergosterol content in different fungi strains upon
treatment of gossypol and its derivatives enabled to propose a mechanism of antifungal activity of these
compounds.

� 2016 Elsevier Ltd. All rights reserved.

Gossypol (Scheme 1), is a yellow pigment, present in various
parts of cotton plants acting as plant’s defense system against
pathogenic fungi and insects.1 This natural bisesquiterpene has
drawn the attention of many scientists because of its wide range
of biological activities including contraceptive,2 anticancer,3 antivi-
ral4 or antimicrobial.5 Unfortunately, the use of gossypol in medi-
cal therapy is limited because of its side effects.6 A convenient way
to obtain less toxic compounds, with no compromise to antimicro-
bial activity is to convert gossypol into its Schiff bases,7 hydra-
zones7a,c,f,h or oximes.7a

In the 1960s a new cycloaddition reaction between alkyne and
azide in the presence of Cu+ cation leading to 1,2,3-triazoles was
discovered.8 The Meldal variant of cycloaddition with the use of
Cu+-catalyst with a classical antioxidant system as, e.g., sodium
ascorbate, called the copper(I)-catalyzed azide–alkyne cycloaddi-
tion (CuAAC),9 is one of the most convenient and efficient exam-
ples of ‘click chemistry’. This synthetic strategy of organic
chemistry was fully described by Kolb, Finn and Sharpless in a
landmark review published in 2001.10 Applications of ‘click
chemistry’ are wide-ranging as they allow attachment of many

structurally diverse triazole blocks to various biomolecules. The
use of 1,3-Dipolar Huisgen cycloaddition has enabled to synthesize
a number of new bioactive compounds and to modify agents of
medical interest.11

In this work we used the copper-catalyzed dipolar cycloaddi-
tion to modify gossypol molecule with triazole moieties because
triazole derivatives are well-known antifungal agents on their
own.12 Firstly, in our synthetic approach gossypol was subjected
to reactions with primary amines containing azide or alkyne func-
tions. These reactions in ethanol gave with very good yields (�85%)
symmetrically substituted Schiff base products 2 and 3 (Scheme 2).
Multiple attempts at direct conversion of compounds 2 and 3 with
respective alkyne or azide reagents into triazole derivatives have
failed. No expected products in the reaction mixture, even after
long reaction time (48 h) or increased amount of the Cu+-catalyst
(2:1 mixture of Cu+ with 2 or 3), could be explained by fact that
both amines and acidic phenolic groups [especially at C(1) and C
(10)] within the structures of 2 and 3 took part in coordination of
Cu+-catalyst in the transition state of dipolar cycloaddition reac-
tion. Therefore, we changed our strategy and prepared the triazole
blocks separately (Scheme 2). First, we converted phthalimide N-
alkyl bromides (compounds 4 and 5) into respective phthalimide
N-alkyl azides (derivatives 6 and 7). These derivatives were further
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modified into new triazole products 8–15 via dipolar cycloaddition
using various alkynes in the presence of CuOAc as a catalyst
(Scheme 2). Removal of phthalimide protection group in the
time-consuming reaction with hydrazine (72 h) yielded various
new amine–triazole intermediates 16–23 with a moderate or good
yields (60–75%). Further condensation of the obtained intermedi-
ates, containing triazoles and different length alkyl chains or ben-
zyloxy groups, with gossypol molecule has given new Schiff base
products 24–31 at good yields (�80%). All synthesized products
(2–31) were characterized in detail by ESI MS, HR-MALDI-TOF
and 1D and 2D NMR methods (Supplementary data). In view of
earlier reports describing the presence of different tautomeric
forms within gossypol as well as within gossypol derivatives it
was necessary to determine the structures of newly obtained
chemical entities 2, 3 and 24–31. In all 1H NMR spectra of 24–31
derivatives, the characteristic doublets at about 9.5 ppm appeared
(Fig. 1S). 1H–13C HMBC correlation (Fig. 2S) revealed that these sig-
nals should be assigned to H(11) protons. Thus, taking into regard
the fact that H(11) signal is a doublet, it was clear that all synthe-
sized derivatives 2, 3 and 24–31 were present as symmetric enam-
ine–enamine tautomers. Furthermore, C(7) carbon atom signals
recorded in the 13C NMR spectra were in the range 173.0–
173.6 ppm (Supplementary data), characteristic of quinone like
ketone carbonyl groups as previously reported.13 Structures of
compounds 2, 3 and 24–31 in solution are stabilized by the pres-
ence of collective intramolecular H-bond systems, as indicated by
the chemical shifts observed for O(1)H, O(6)H and NH protons in
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Scheme 1. Structure and tautomeric forms of gossypol and its Schiff bases.
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Scheme 2. Synthetic approach to obtain novel Schiff bases of gossypol containing triazole ring.
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