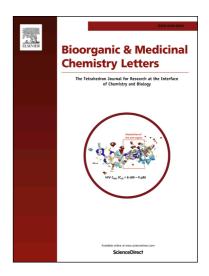
## Accepted Manuscript

Trypsin inhibitors for the treatment of pancreatitis

Trixi Brandl, Oliver Simic, Philip R. Skaanderup, Kenji Namoto, Frederic Berst, Claus Ehrhardt, Nikolaus Schiering, Irene Mueller, Julian Woelcke


PII: S0960-894X(16)30742-9

DOI: http://dx.doi.org/10.1016/j.bmcl.2016.07.029

Reference: BMCL 24073

To appear in: Bioorganic & Medicinal Chemistry Letters

Received Date: 1 June 2016 Revised Date: 12 July 2016 Accepted Date: 13 July 2016



Please cite this article as: Brandl, T., Simic, O., Skaanderup, P.R., Namoto, K., Berst, F., Ehrhardt, C., Schiering, N., Mueller, I., Woelcke, J., Trypsin inhibitors for the treatment of pancreatitis, *Bioorganic & Medicinal Chemistry Letters* (2016), doi: http://dx.doi.org/10.1016/j.bmcl.2016.07.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

### **ACCEPTED MANUSCRIPT**



#### Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com

#### Trypsin inhibitors for the treatment of pancreatitis

Trixi Brandl<sup>a,\*</sup>, Oliver Simic<sup>a</sup>, Philip R. Skaanderup<sup>a</sup>, Kenji Namoto<sup>a</sup>, Frederic Berst<sup>a</sup>, Claus Ehrhardt<sup>a</sup>, Nikolaus Schiering<sup>a</sup>, Irene Mueller<sup>a</sup> and Julian Woelcke<sup>b</sup>

<sup>a</sup>Novartis Pharma AG, Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland <sup>b</sup>Novartis Pharma AG, Cardio Metabolic Development Franchise, Novartis Campus, CH-4002 Basel, Switzerland

#### ARTICLE INFO **ABSTRACT** Proline-based trypsin inhibitors occupying the S1-S2-S1' region were identified by an HTS Article history: screening campaign. It was discovered that truncation of the P1' moiety and appropriate Received Revised extension into the S4 region led to highly potent trypsin inhibitors with excellent selectivity Accepted against related serine proteases and a favorable hERG profile. Available online 2009 Elsevier Ltd. All rights reserved. Keywords: Trypsin inhibitor Pancreatitis hERG inhibition X-ray crystal structure

Acute and chronic pancreatitis are serious conditions characterized by inflammation, fibrosis as well as endocrine and exocrine dysfunction of the pancreas. The unmet medical need is reflected in a high incidence rate, and a mortality of up to 40% in the US. Pancreatitis is the result of genetic and environmental factors leading to inappropriate activation of trypsin as well as other proteases and lipases causing direct pancreatic injury which in turn triggers an inflammatory response. The genetic contribution to risk for hereditary pancreatitis is due to autosomal dominant gain-of-function mutations in the cationic trypsinogen gene PRSS1<sup>4-6</sup> and to loss-of-function mutations in the gene of the endogenous trypsin inhibitor Kazal type 1 (SPINK1). Premature activation of trypsinogen within the acinar cells of the pancreas is considered to be an early event in the onset of pancreatitis. This enhanced intracellular proteolytic activity results in cell injury and triggers an inflammatory response. Recent investigation of pathophysiologic markers indicates trypsinogen and other pancreatic proteases have a close correlation to disease severity. Trypsin activation is believed to be a pivotal step in the onset of the disease.

Consequently, trypsin inhibitors have gained some interest as early as the 1960s when aprotinin, a Kunitz type serine protease inhibitor was widely used for patients with acute pancreatitis. However, effectiveness of aprotinin could never be confirmed, most likely due to insufficient plasma and peritoneal levels of the drug after intravenous administration. Subsequently, non-peptidic irreversible trypsin inhibitors like gabexate (intravenous) and camostat (oral) were launched in Japan. These compounds display activity against several other serine proteases and show very short *in vivo* half-lives, limiting their broader use. 11,12

Therefore, potent and selective trypsin inhibitors with favorable intravenous pharmacokinetic properties would be attractive for the development of novel drugs for the treatment of pancreatitis. By screening our in-house compound library, <sup>13,14</sup> a series of benzyl amine-substituted proline derivatives emerged as an

By screening our in-house compound library, <sup>13,14</sup> a series of benzyl amine-substituted proline derivatives emerged as an interesting hit class. Compound 1 displayed good trypsin activity in the sub micro-molar range (Figure 1) combined with a remarkable selectivity against a panel of related S1-serine proteases (Table 4). In addition, physico-chemical properties were in an acceptable range with a solubility of >1 mM at pH 6.8 and a measured logP of 3.0.

#### Download English Version:

# https://daneshyari.com/en/article/10592232

Download Persian Version:

https://daneshyari.com/article/10592232

<u>Daneshyari.com</u>