Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

Asymmetric synthesis and receptor activity of chiral simplified resiniferatoxin (sRTX) analogues as transient receptor potential vanilloid 1 (TRPV1) ligands

Myeong Seop Kim^a, Yooran Ki^a, Song Yeon Ahn^a, Suyoung Yoon^a, Sung-Eun Kim^a, Hyeung-Geun Park^a, Wei Sun^b, Karam Son^c, Minghua Cui^c, Sun Choi^c, Larry V. Pearce^d, Timothy E. Esch^d, Ian A. DeAndrea-Lazarus^d, Peter M. Blumberg^d, Jeewoo Lee^{a,*}

^a Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea

^b Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China

^c National Leading Research Lab of Molecular Modeling & Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences and Global Top 5 Research Program,

Ewha Womans University, Seoul 120-750, Republic of Korea

^d Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA

ARTICLE INFO

Article history: Received 25 September 2013 Revised 20 October 2013 Accepted 29 October 2013 Available online 6 November 2013

Keywords: Vanilloid receptor 1 TRPV1 antagonist Capsaicin Resiniferatoxin Molecular modeling

ABSTRACT

The chiral isomers of the two potent simplified RTX-based vanilloids, compounds **2** and **3**, were synthesized employing highly enantioselective PTC alkylation and evaluated as hTRPV1 ligands. The analysis indicated that the *R*-isomer was the eutomer in binding affinity and functional activity. The agonism of compound **2***R* was comparable to that of RTX. Docking analysis of the chiral isomers of **3** suggested the basis for its stereospecific activity and the binding mode of **3***R*.

© 2013 Elsevier Ltd. All rights reserved.

The transient receptor potential V1 (TRPV1) receptor¹ is a molecular integrator of nociceptive stimuli and functions as a non-selective cation channel with high Ca²⁺ permeability. The receptor is activated by protons,² heat,³ endogenous inflammatory mediators^{4,5} and natural vanilloids such as capsaicin (CAP)⁶ and resiniferatoxin (RTX).⁷ Its activation leads to an increase in intracellular Ca²⁺ that results in excitation of primary sensory neurons and ultimately the central perception of pain.

RTX has proven to function pharmacologically as an ultrapotent agonist for TRPV1, for example displaying 10^3 - to to 10^4 -fold greater potency than the prototypic agonist capsaicin.⁸ In order to find a simple surrogate of RTX, we initially analyzed the pharmacophores of RTX based on previous SAR investigations and proposed a pharmacophoric model in which the principal pharmacophores were the 4-hydroxy-3-methoxyphenyl (A-region), C₂₀-ester (B-region), orthophenyl (C₁-region) and C₃-keto (C₂-region) groups.⁹ On the basis of this model, we have extensively investigated simplified RTX surrogates embodying the principal pharmacophores of RTX to find potent agonists^{9,10} as well as antagonists^{11–13}

These extensive efforts identified the template of *N*-(3-acyloxy-2-benzylpropyl)-*N*'-benzyl thiourea as an optimized surrogate of RTX. Compounds **2** and **3** represent the prototypic agonist and antagonist with high affinity as simplified RTX-based vanilloids in the rat TRPV1/CHO system.^{10,13} Their key pharmacophores are color-coded to show their correspondence with the pharmacophores of RTX (Fig. 1). Since the C-region of compounds **2** and **3**, viz. the 3-pivaloyl-2-(4-*t*-butylbenzyl)propyl group, has a chiral center, its active enantiomer is expected to make a stereospecific interaction with the receptor as previously observed in a series of propanamides.¹²

Here we describe the asymmetric syntheses and receptor activities of the chiral isomers of **2** and **3** as well as modeling analysis using our human TRPV1 homology model to explain the stereospecific activity of the compounds.

The A-region of compound **2** was synthesized from vanillin in 4 steps (Scheme 1). The hydroxyl of vanillin (**4**) was protected and the product then reduced to give alcohol **5**. The hydroxyl of **5** was converted to the azide with diphenylphosphoryl azide and then transformed to the corresponding isothiocyanate **6** using carbon disulfide and triphenyphosphine.¹⁴ The A-region of compound **3** was prepared from commercially available **7** in 3 steps

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2013.10.064

Figure 1. Resinifertoxin (RTX) and simplified RTX (sRTX).

Scheme 1. Synthesis of the A-region of compound **2**. Reagents and conditions: (a) DIEA, MOMCI, CH2CI2, rt, 2 h, 99%; (b) NaBH4, LiCl, THF, EtOH, 0 °C, 1 h , 99%; (c) DPPA, DBU, toluene, rt, 1 h, 99%; (d) CS2, PPh3, THF, reflux, 2 h, 60%.

Scheme 2. Synthesis of the A-region of compound **3**. Reagents and conditions: (a) MsCl, pyridine, rt, 2 h, 98%; (b) Zn(CN)2, Pd(PPh3)4, DMF, 150 °C, 15 h, 85%; (c) 2 M BH3-SMe2 in THF, reflux, 3 h then 1 M HCl, reflux, 15 h, 92%.

(Scheme 2). The amine of **7** was mesylated and then its iodide was converted into the corresponding nitrile to provide nitrile **8**, which was reduced to afford the amine **9**.

The asymmetric synthesis of the C-region utilized the highly enantioselective phase-transfer catalytic mono-alkylation of malonamic ester as a key step, previously reported by Park and Jew et al. (Schemes 3 and 4).¹⁵ The substrate for asymmetric alkylation, N,N-bis(p-methoxyphenyl) malonamide tert-butyl ester (11), was prepared from malonic monoester 10. The phase-transfer catalytic α -alkylation of **11** in the presence of (*R*,*R*)-3,4,5-trifluorophenyl-NAS bromide using 4-t-benzyl bromide afforded the highly enantioselective 12R (99%, 92% ee). The LiAlH₄ reduction of 12R produced the 3-aminopropanol **13***R*, whose di-PMP protecting group was converted into the corresponding Boc group to give 14R. The alcohol of 14R was pivaloylated and then the N-Boc group was deprotected to yield the C-region amine **15***R*. Finally, the coupling of 15R with isothiocyanate 6 followed by MOM-deprotection provided the final compound 2R. The amine of 15R was converted to the corresponding isothiocyanate, which was coupled with amine 9 to provide the final 3R.

To prepare the corresponding **S**-isomers, the phase-transfer catalytic α -alkylation of **11** employing (*S*,*S*)-ligand provided **125** with high enantioselectivity (99%, 99% ee). With **125**, the same routes used in Scheme 3 produced the final **25** and **35**, respectively. The structures and optical purities of final compounds were confirmed by spectroscopic data and chiral HPLC.¹⁶

The binding affinities and potencies as agonists/antagonists of the synthesized TRPV1 ligands were assessed in vitro by a binding competition assay with [³H]RTX and by a functional ⁴⁵Ca²⁺ uptake assay using human TRPV1 heterologously expressed in Chinese hamster ovary (CHO) cells, as previously described.^{17,18} The results are summarized in Table 1, together with the potencies of RTX, I-RTX and racemates **2** and **3**.

The receptor activities of compounds **2** and **3** were previously reported for the rat TRPV1/CHO system^{10,13} and are reported here for human TRPV1 compared to the activities of RTX and I-RTX. Compound **2** proved to be a potent agonist for *h*TRPV1 with K_i = 6.1 nM and EC₅₀ = 1.34 nM; it was thus within ca. 5- and 1.5-fold of the potency of RTX in binding affinity and agonism, respectively, with human TRPV1. Compound **3** was a potent *h*TRPV1 antagonist with K_i = 23 nM and $K_{i(ant)}$ = 122 nM, which was ca. 2- and 20-fold less potent than I-RTX in binding affinity and antagonism, respectively.

Analysis of the chiral isoforms indicated that the *R*-isomer was the more active isomer for both compounds **2** and **3**. In the case of

Scheme 3. Syntheses of (*R*)-sRTX isomers Reagents and conditions: (a) 4,4'-dimethoxydiphenyl amine, EDC, DMAP, CH₂Cl₂, rt, 20 h, 98%; (b) (*R*,*P*)-3,4,5-trifluorophenyl-NAS bromide, 4-t-butylbenzyl bromide, 50% KOH, toluene, -40 °C, 24 h, 99%; (c) LiAlH₄, dibutyl ether, reflux, 1 h, 70%; (d) CAN, H₂O, CH₃CN, 0 °C, 30 min; (e) 8 N NaOH, Boc₂O, rt, 7 h, 60% for 2 steps; (f) C(CH₃)₃COCl, DMAP, CH₂Cl₂, rt, 4 h, 95%; (g) CF₃CO₂H, CH₂Cl₂, rt, 2 h; (h) compound **6**, NEt₃, CH₂Cl₂, rt, 20 h, 80% for 2 steps; (i) CF₃CO₂H, CH₂Cl₂, 0 °C, 1 h, 60%; (j) 1,1'-thiocarbonyldi-2-pyridone, NEt₃, DMF, rt, 15 h, 75% for 2 steps; (k) compound **9**, NEt₃, CH₂Cl₂, rt, 15 h, 70%.

Download English Version:

https://daneshyari.com/en/article/10592870

Download Persian Version:

https://daneshyari.com/article/10592870

Daneshyari.com