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a b s t r a c t

A series of naphthopyrans was synthesized employing silica supported fluoroboric acid under solvent free
conditions in a microwave reactor. The catalytic influence of HBF4–SiO2 was investigated in detail to opti-
mize the reaction conditions. The synthesised compounds were evaluated for in vitro xanthine oxidase
inhibitory activity for the first time. Structure–activity relationship analyses have also been presented.
Among the synthesised compounds, NP-17, NP-19, NP-20, NP-23, NP-24, NP-25 and NP-26 were the
active inhibitors with an IC50 ranging from 4 to 17 lM. Compound NP-19 with a thiophenyl ring at posi-
tion 1 emerged as the most potent xanthine oxidase inhibitor (IC50 = 4 lM) in comparison to allopurinol
(IC50 = 11.10 lM) and febuxostat (IC50 = 0.025 lM). The basis of significant inhibition of xanthine oxidase
by NP-19 was rationalized by its molecular docking at MTE binding site of xanthine oxidase.

� 2013 Elsevier Ltd. All rights reserved.

Xanthine oxidase, a molybdoflavoprotein catalyses the oxida-
tive hydroxylation of hypoxanthine and xanthine to produce uric
acid and reduction of oxygen at the flavin centre generating reac-
tive oxygen species either as superoxide anion radical or hydrogen
peroxide.1–3 Catalysis by xanthine oxidase to produce uric acid and
reactive oxygen species leads to many diseases like gout and at
least symptoms of diseases like oxidative damage to the tissue.2

Despite the potential of purine base compounds as xanthine oxi-
dase inhibitors such as allopurinol,3,4 2-alkyl hypoxanthines,5 pter-
in and 6-formylpterin,6 there is a continuous search for non-purine
based xanthine oxidase inhibitors. The revived interest among the
researchers towards the xanthine oxidase inhibitors with structur-
ally diverse and non-purine isosters7 such as feboxustat,8 flavo-
noids,9 FYX-051,10 1,3-diaryltriazole derivative11 and curcumin12

can be attributed to the interactions of purine analogs xanthine
oxidase inhibitors on activities of purine and pyrimidine metabo-
lizing enzymes leading to Steven Johnson syndrome and worsening
of renal function induced in some of the patients.2–4

Recently our research group reported N-(1,3-diaryl-3-oxopro-
pyl)amides13 (1), N-acetyl pyrazolines14 (2) and azaflavones15 (3)
(Fig. 1) as non purine based xanthine oxidase inhibitors.

In continuation of our search for non-purine based xanthine
oxidase inhibitors, the present study investigates the potential of
naphthopyrans as a new class of non purine xanthine oxidase
inhibitors in view of the potent xanthine oxidase inhibitory poten-
tial of some phytoconstituents possessing benzopyran nucleus
such as Apigenin and Esculetin (Fig. 2) which are ideal molecules
to represent their respective classes of compounds.

Structure–activity relationship established for Apigenin and
Esculetin reveals that the presence of hydroxyl groups at specific
positions on the benzopyran nucleus (Ring A) is an important
structural feature for the inhibitory potential. The present study
explores the role of naphthyl moiety as a surrogate for the hydroxy
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Figure 1. Structures of non purine xanthine oxidase inhibitors.
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substituted fused benzene ring in benzopyrans. The placement of
the naphthyl ring was speculated to enhance the arene–arene
interaction in addition to hydrophobic interactions after observing
the structural topology of the receptors active site. However this
replacement will result in loss of hydrogen bonding interaction

With this background, a series of naphthopyrans was designed,
synthesised and evaluated for xanthine oxidase inhibition. Litera-
ture survey revealed that a convenient synthetic protocol is still
lacking for this class of compounds. Multicomponent synthesis
by lewis acids/bronsted acids have gained enough attention in
the recent past.17 Moreover, bronsted acids adsorbed on silica have
been reported to be excellent heterogenous catalysts.18 With our
continuous investigation on developing efficient methodology for
the synthesis of non purine xanthine oxidase inhibitors13 and influ-
enced by the tight legislation on maintenance of greenness in syn-
thetic pathways and processes,16 that is, to prevent generation of
waste, avoid use of auxiliary substances (e.g., solvents, additional
reagents) and minimise energy requirements, we report herein,
for the first time, three-component cyclocondensation of an alde-
hyde, b-naphthol and active methylene comppunds, accomplished
by using silicated fluoroboric acid as catalyst under solvent-free
condition and microwave (MW) irradiation, which appears to be
an efficient and environmentally friendly preparation of the target
compounds. Adsorption of reagents on to insoluble inorganic/
organic support improves activity and selectivity of reagent by
increasing effective surface area of reagent dispersed on support
up to hundred times.

In an attempt to investigate the catalytic efficiency of various
Bronsted acids adsorbed on silica (BA–silica) (Table 1), a model
reaction was performed for the synthesis of target compound
(Scheme 1).

Table 1 reveals that Fluoroboric acid adsorbed on silica most
efficiently catalysed the synthesis of the target compound. The
high catalytic influence of HBF4–SiO2 could be attributed to the fact
that HBF4 is weak protic acid which when adsorbed on silica might
have circumvent the problem of side reactions whereas in case of
strong bronsted acids such as perchloric aicd, sulphuric acid and
nitric acid, the yields were not that high. Silica was also employed

as an activator to evaluate its activating power. However the reac-
tion did not proceed as desired indicating that the role of silica was
just limited as an adsorbent.
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Scheme 1. Synthesis of naphthopyrans.

Table 1
Percentage yield of naphthopyran with various activators

Entry Activator (BA–SiO2) % age yield

1 HNO3–SiO2 43
2 H2SO4–SiO2 52
3 HClO4–SiO2 49
4 HBF4–SiO2 65
5 SiO2 —

Table 2
Percentage yield with varying mol % of the catalyst and time of exposure to
microwave irradiation of some selected naphthopyrans. The bold values indicates the
most appropriate conditions

Structure Loading (mole %) Time (min) Yield (% age)
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1 5 65
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15 67

5 5 75
10 89
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10 79
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Figure 2. Structures of Apigenin and Esculetin.
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