Bioorganic & Medicinal Chemistry Letters 23 (2013) 6625-6628

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Metabolism-guided discovery of a potent and orally bioavailable urea-based calcimimetic for the treatment of secondary hyperparathyroidism

Paul M. Wehn^a, Paul E. Harrington^{b,*}, Timothy J. Carlson^c, James Davis^d, Pierre Deprez^e, Christopher H. Fotsch^b, Mark P. Grillo^c, Jenny Ying-Lin Lu^f, Sean Morony^d, Kanaka Pattabiraman^a, Steve F. Poon^b, Jeff D. Reagan^f, David J. St. Jean Jr.^b, Taoues Temal^e, Minghan Wang^d, Yuhua Yang^f, Charles Henley III^d, Sarah E. Lively^a

^a Department of Medicinal Chemistry, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA

^b Department of Medicinal Chemistry, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA

^c Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA

^d Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA

^e Galapagos SASU, 102 Avenue Gaston Roussel, 93230 Romainville, France

^f Department of Metabolic Disorders, Amgen Inc., 1120 Veterans Blvd., South San Francisco, CA 94080, USA

ARTICLE INFO

Article history: Received 3 September 2013 Revised 22 October 2013 Accepted 23 October 2013 Available online 31 October 2013

Keywords: Calcimimetics Positive allosteric modulators 1,2,4-Thiadiazoles Metabolite ID Time dependent inhibition

ABSTRACT

A series of urea based calcimimetics was optimized for potency and oral bioavailability. Crucial to this process was overcoming the poor pharmacokinetic properties of lead thiazole **1**. Metabolism-guided modifications, characterized by the use of metabolite identification (ID) and measurement of time dependent inhibition (TDI) of CYP3A4, were essential to finding a compound suitable for oral dosing. Calcimimetic **18** exhibited excellent in vivo potency in a 5/6 nephrectomized rat model and cross-species pharmacokinetics.

© 2013 Elsevier Ltd. All rights reserved.

Secondary hyperparathyroidism (secondary HPT) is a condition characterized by the chronic elevation of parathyroid hormone (PTH) that often develops in patients with compromised kidney function.¹ The regulation of PTH levels is governed by the calcium-sensing receptor (CaSR), a class 3 G protein-coupled receptor (GPCR) primarily expressed on the parathyroid gland.² Increases in serum Ca²⁺ concentration raise the level of activation of the CaSR and inhibit PTH secretion, whereas decreases in serum Ca²⁺ concentration reduce CaSR activation and enhance PTH secretion.³ Left untreated, secondary HPT can lead to limb deformities as well as bone and joint pain. The discovery of positive allosteric modulators of the CaSR, type II calcimimetics, represents a novel therapy for the treatment of secondary HPT.⁴ Such agents increase the sensitivity of the CaSR to serum Ca²⁺ and thereby decrease secretion of PTH.

In a groundbreaking publication, Nemeth and co-workers described the in vitro and in vivo pharmacology of the first type

II calcimimetic with the disclosure of *R*-568 and related analogues.⁵ Subsequent work to identify new calcimimetic agents has focused almost entirely on derivatives that retain a basic α -methylbenzyl amine moiety.⁶ A novel series of benzothiazole urea based calcimimetics arising from *R*-568 and fendiline was recently disclosed.⁷ Further development of this series led to **1**.⁸ In vivo studies with **1**, using a 5/6 nephrectomized rat model of kidney failure wherein

^{*} Corresponding author. Tel.: +1 805 313 5564; fax: +1 805 480 1337. *E-mail address:* pharring@amgen.com (P.E. Harrington).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2013.10.050

Figure 2. Metabolites of 1 formed from incubation with rat liver microsomes (RLM) and elucidated by tandem mass spectrometry.

Table 1

Heterocyclic replacements of thiazole

Table 2

Impact of electron withdrawing groups on TDI potential

Compound	Х	%3A4 Activity Remaining ^a	$hCaSR EC_{50} (nM)^{b}$
7	Н	22	36
8	F	28	53
9	SO ₂ Me	59	17
10	CN	76	157
11	Cl	91	18

^a CYP3A4 experiments were performed as previously described Ref. 11
^b Values are an average of at least two determinations.

Table 3

Chlorothiazole and thiadiazole analogues of 1

Compound	Х	R	$hCaSR EC_{50} (nM)^{a}$	PK Data ^b CL (L/h/kg)/%F
12	CCl	NHSO ₂ Me	3	1.4/37
13	CCl	SO ₂ NH ₂	2	0.42/16
14	Ν	NHSO ₂ Me	6	4.0/23
15	Ν	SO_2NH_2	3	3.8/23
15	Ν	SO_2NH_2	3	3.8/23

^a Values are an average of at least two determinations.

^b Pharmacokinetic studies were conducted in male Sprague–Dawley rats and were administered at 0.5 mg/kg IV and 2 mg/kg PO.

Numerous reports indicate thiazoles as elements of oxidative susceptibility.⁹ Our strategy to prevent epoxidation was to replace the thiazole nucleus with other heterocycles lacking the potential for epoxidation (Table 1). Despite considerable effort, only 1,2,4-thiadiazole **6** (hCaSR EC₅₀ = 23 nM)¹⁰ was identified as a competent bioisostere of **1**.

^a Values are an average of at least two determinations.

one kidney and 2/3 of the second kidney have been surgically removed, showed promise demonstrating a modest reduction in serum PTH levels. Despite these positive features, **1** exhibited substantial liabilities including poor pharmacokinetics (PK). This account describes our systematic efforts to address the metabolism of **1** (Fig. 1).

To understand the high clearance of **1**, a series of metabolite ID studies was performed. Incubation of **1** in the presence of rat liver microsomes (RLM) indicated sites of oxidation at the thiazole, morpholine, and *gem*-diphenyl moieties. Further studies to elaborate the specific nature of the oxidations were performed by incubating **1** in RLM containing *N*-acetylcysteine (Fig. 2). These studies suggested the intermediacy of a reactive epoxide in the formation of metabolite **1a** and implicated oxidation of the phenyl ring to a quinone methide in the formation of metabolite **1b**. The intermediacy of specific oxidations in the formation of metabolites **1a** and **1b** suggested a potential strategy to improve their stability.

Download English Version:

https://daneshyari.com/en/article/10593275

Download Persian Version:

https://daneshyari.com/article/10593275

Daneshyari.com