Bioorganic & Medicinal Chemistry Letters 23 (2013) 4303-4307

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

A chemoenzymatic route to synthesize unnatural sugar nucleotides using a novel *N*-acetylglucosamine-1-phosphate pyrophosphorylase from *Camphylobacter jejuni* NCTC 11168

Junqiang Fang^a, Mengyang Xue^{a,b}, Guofeng Gu^a, Xian-wei Liu^{a,*}, Peng George Wang^{a,c}

^a National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China ^b The State Key Laboratory of Microbial Technology and School of Life Sciences, Shandong University, Jinan, Shandong 250100, People's Republic of China ^c Department of Chemistry, Georgia State University, PO Box 4098, Atlanta, GA 30302-4098, USA

ARTICLE INFO

Article history: Received 19 March 2013 Revised 30 May 2013 Accepted 1 June 2013 Available online 11 June 2013

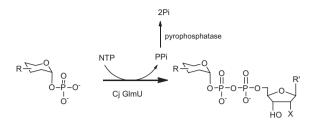
Keywords: N-Acetylglucosamine-1-phosphate pyrophosphorylase Substrate specificity UDP-GlcNAc Unnatural sugar nucleotide Chemoenzymatic synthesis

ABSTRACT

A novel *N*-acetylglucosamine-1-phosphate pyrophosphorylase was identified from *Campylobacter jejuni* NCTC 11168. An unprecedented degree of substrate promiscuity has been revealed by systematic studies on its substrate specificities towards sugar-1-P and NTP. The yields of the synthetic reaction of seven kinds of sugar nucleotides catalyzed by the enzyme were up to 60%. In addition, the yields of the other nine were around 20%. With this enzyme, three novel sugar nucleotide analogs were synthesized on a preparative scale and well characterized.

© 2013 Elsevier Ltd. All rights reserved.

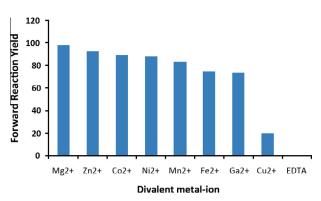
Unnatural sugar nucleotides, analogs of common sugar nucleotides equipped with functional groups or its derivatives, are indispensable materials for deciphering structure–function relationships in carbohydrate-associated pathways and discovering carbohydrate-based drugs. In addition to presenting nine common sugar nucleotides identified in mammalian cells, several unnatural sugar nucleotides have been discovered from different organisms, for example, UDP-2-acetamindo-2,6-dideoxy- α -D-xylo-hexos-4ulose,¹ UDP-4-keto-6-deoxyl-GlcNAc,² UDP-2,4-diacetamido-Bac, ADP-Glc,³ dTDP-Glc, dTDP-4-keto-L-rhamnose, dTDP-L-rhamnose.⁴ Recent studies show that those unnatural sugar nucleotides are considered to have functional impact on biological activity, selectivity and pharmacokinetic properties of glycoconjugates.


Uridine 5'-diphosphate *N*-acetylglucosamine (UDP-GlcNAc) is a ubiquitous and essential cytoplasmic amino sugar nucleotide, plays an important role in the biosynthetic pathway of peptidoglycan,^{5,6} the core and lipid A moieties of the lipopolysaccharides,⁷ enterobacterial common antigen, some O antigens of Gram-negative bacteria and the teichoic acid of Gram-positive bacteria. Chemical and/or enzymatic approaches have been thoroughly studied to synthesize UDP-GlcNAc.^{8,9} Given the potential roles of unnatural sugar nucleotides and the functional roles of UDP-GlcNAc, the development of chemical and/or enzymatic methods to derivatize UDP-GlcNAc with diverse moieties has attracted much attention, however, for enzymatic methods, the major bottleneck is the limited availability of functional enzymes which have broad substrate specificity. *N*-acetylglucosamine-1-phosphate pyrophosphorylase (GlmU) is a cytoplasmic enzyme involved in prokaryotic biosynthesis pathway and an attractive target for antibiotic drug discovery.¹⁰ Our previous work on *Escherichia coli* K12 GlmU (EcGlmU) demonstrated that EcGlmU could be used to prepare UDP-GlcNAc derivatives.¹¹ Unfortunately, the relatively strict substrate specificity and low yields of products have restricted the application of this enzyme.

To gain insight into chemoenzymatic synthesis of unnatural sugar nucleotides, especially those UDP-GlcNAc derivatives, we focus on *Campylobacter jejuni* glycosylation system^{12–15} to find a feasible and effective approach to synthesize unnatural sugar nucleotides which can greatly benefit synthetic, biological and medicinal chemistry. Herein, we provide a chemoenzymatic method to synthesize multiple unnatural sugar nucleotides using a novel *N*-acetylglucosamine-1-phosphate pyrophosphorylase (CjGlmU) from *C. jejuni* NCTC 11168 (Scheme 1).

According to our previous work on *Escherichia coli* K12 GlmU,^{11,16} we cloned and overexpressed CjGlmU. The catalytic activity of CjGlmU was detected under standard condition in a total 100 µL solution system containing 20 mM Tris–HCl (pH 7.5), 5 mM

^{*} Corresponding author. Tel.: +86 531 88366078; fax: +86 531 88363002. *E-mail address:* xianweiliu@sdu.edu.cn (X. Liu).


MgCl₂, 5 mM GlcNAc-1-P, 5 mM UTP, 1 U/mL yeast inorganic pyrophosphatase and 10 μ L purified protein (about 6 μ g). Yeast inorganic pyrophosphatase could drive the reaction forward by

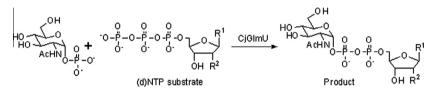

Scheme 1. Enzymatic synthesis of unnatural sugar nucleotides using CjGlmU from sugar-1-Ps and NTPs.

Table 1

Yields of NDP-GlcNAc analogs synthesized by CjGlmU

Entry	R^1	R^2	(d)NTP substrate	Product	Exact mass	Reaction yield ^a (%)
1		-OH	UTP	UDP-GIcNAC	607.1	97.9
2		-H	dUTP	dUDP-GIcNAC	591.1	94.2
3		-H	dTTP	dTDP-GIcNAC	605.1	97.7
4	NH2 N N N N	-OH	СТР	CDP-GICNAC	606.1	64.6
5		-Н	dCTP	dCDP-GIcNAC	590.1	3.6
6		-H	dm ⁵ CTP	dm⁵CDP-GIcNAC	614.1	N/A ^b
7		-OH	АТР	ADP-GIcNAC	630.1	3.3
8		-Н	dATP	dADP-GIcNAC	614.1	N/A ^b
9		-H	dm ⁶ ATP	dm ⁶ ADP-GIcNAC	628.1	10.8
10		-OH	GTP	GDP-GIcNAC	646.1	N/A ^b

^a Yield from profiles of capillary electrophoresis.

^b No product detected by MS or capillary electrophoresis.

Download English Version:

https://daneshyari.com/en/article/10593527

Download Persian Version:

https://daneshyari.com/article/10593527

Daneshyari.com