

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of novel oxazolidinedione derivatives as potent and selective mineralocorticoid receptor antagonists

Christine Yang ^{a,*}, Hong C. Shen ^{a,*}, Zhicai Wu ^a, Hong D. Chu ^a, Jason M. Cox ^a, Jaume Balsells ^b, Alejandro Crespo ^c, Patricia Brown ^e, Beata Zamlynny ^e, Judyann Wiltsie ^d, Joseph Clemas ^d, Jack Gibson ^d, Lisa Contino ^d, JeanMarie Lisnock ^d, Gaochao Zhou ^d, Margarita Garcia-Calvo ^d, Tom Bateman ^f, Ling Xu ^f, Xinchun Tong ^f, Martin Crook ^e, Peter Sinclair ^a

- a Department of Discovery Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA
- ^b Department of Process Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA
- ^c Department of Chemistry Modeling & Information, Merck Research Laboratories, PO Box 2000, Rahway, NI 07065-0900, USA
- ^d Department of In Vitro Pharmacology, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA
- ^e Department of Cardiovascular Diseases, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA
- f Department of Drug Metabolism, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065-0900, USA

ARTICLE INFO

Article history: Received 21 March 2013 Revised 20 May 2013 Accepted 21 May 2013 Available online 4 June 2013

Keywords:

Mineralocorticoid receptor antagonist Hypertension

ABSTRACT

Novel oxazolidinedione analogs were discovered as potent and selective mineralocorticoid receptor (MR) antagonists. Structure–activity relationship (SAR) studies were focused on improving the potency and microsomal stability. Selected compounds demonstrated excellent MR activity, reasonable nuclear hormone receptor selectivity, and acceptable rat pharmacokinetics.

© 2013 Elsevier Ltd. All rights reserved.

The mineralocorticoid receptor (MR) is a nuclear hormone receptor that regulates the expression of multiple genes involved in cardiovascular disease and electrolyte homeostasis. MR is activated by aldosterone, which increases blood pressure through its effects on natriuresis, with potential additional effects on the brain, heart and vasculature. 1 In visceral tissues, such as the kidney and the gut, MR regulates sodium retention, potassium excretion and water balance in response to aldosterone. Resistant hypertensive patients frequently suffer from increased aldosterone levels, often termed as 'aldosterone breakthrough', as a result of increases in serum potassium or residual subtype I receptor activity of angiotensin II (AT1R).² Hyperaldosteronism and aldosterone breakthrough typically cause elevated blood pressure and congestive heart failure (CHF), as well as enhanced MR activity. Hence, direct antagonism of MR has a strong biological rational for treating hypertension and CHF.

Other receptors in the same receptor subclass are androgen receptor (AR), glucocorticoid receptor (GR), estrogen receptor (ER), and the progesterone receptor (PR). It should be noted that both cortisol and corticosterone bind MR, and aldosterone is generally considered as the major endogenous ligand for MR with high

* Corresponding authors. Tel.: +1 908 740 6593.

E-mail address: christine_yang@merck.com (C. Yang).

affinity.³ Due to the distinct functions of each nuclear hormone receptor, it is imperative to develop selective MR antagonists to minimize potential side effects as a result of interaction with other nuclear hormone receptors.

Despite significant therapeutic advances in the treatment of hypertension and heart failure, the current standard of care is suboptimal and there is a clear unmet medical need for additional pharmacological interventions. Eplerenone and spironolactone are two MR antagonists that are efficacious in treating cardiovascular disease, particularly hypertension and heart failure. 4 Moreover, multiple studies have shown that treatment with spironolactone or eplerenone significantly lower systolic blood pressure in hypertensive patients.⁵ In spite of their therapeutic utility, there remain issues to overcome for both eplerenone and spironolactone. For example, spironolactone elicits unwanted side effects such as gynecomastia and menstrual irregularities due to its AR and PR activity. 6 Conversely, eplerenone is more selective against other nuclear hormone receptors, but it lacks good MR potency relative to spironolactone and requires b.i.d. dosing.⁷ As such, we have embarked on a discovery program to identify efficacious and safe MR antagonists that possess the efficacy of spironolactone and selectivity of eplerenone. Herein we report preliminary results on the discovery of oxazolidinedione derivatives as a class of novel, non-steroidal, and potent MR antagonists.8

An in-house high-throughput screening identified compound ${\bf 1a}$ with modest MR activity in the human MR NH Pro assay (${\rm IC}_{50}=6~\mu{\rm M}$). This assay is a commercially available PathHunterTM protein–protein interaction assay that measures the ability of compounds to antagonize full-length human MR binding to a coactivator peptide.⁹ In this assay, the average ${\rm IC}_{50}$ for spironolactone and eplerenone is 11 nM and 244 nM, respectively. Hit ${\bf 1a}$ possesses at least four distinct subgroups as colored in Figure 1. The optimization strategy is to establish SAR with each of the four subgroups, namely, ${\rm R}^1{\rm -R}^3$ and the oxazolidinedione core, as summarized in Tables 1–4.

Prior to the optimization of R¹ region in 1a (Table 1), the influence of the absolute configuration of 1a on MR antagonism was found to be critical with the enantiomer of 1a being essentially inactive (IC₅₀ >40 μM). In addition, 3-OMe substitution of the benzvl group (1b) improved the MR activity by sixfold compared to 1a. The next discovery was that the methyl group present in the R³ region markedly enhanced the activity against MR (1c vs 1b and 1g vs 1f). With this embedded methyl group in the R³ region, various substitution of the benzyl group were explored (1h-1o are shown as a subset), however, none exhibited superior activity to 1g. On the other hand, the presence of the methyl group in the R¹ region of 1j and 1k did not present advantages over compound 1i in terms of activity. Fused bicyclic aryl or heteroaryl methyl amine-derived amides, in general, led to reduced MR activity (1p, 1jj, 1kk and 1ll), except in the case of 1mm. The incorporation of monocyclic heteroaryls one or two carbons away from the amide group, as shown by 1dd-1ii and 1nn-1qq, respectively, resulted in poor MR activity. The size variation of cycloalkyl groups adjacent to amide gave MR activities within a few-fold of fluctuation (1x-1z). The addition of a terminal phenyl group to cyclobutyl or cyclopropyl improved potency as shown by 1aa-1cc. Lastly, aniline analogs (1q-1w) provided modest to good potency.

Table 2 summarizes the efforts to optimize the R² region. The removal of the benzyl group in this region resulted in a complete loss of activity against MR (**2a** vs **1a**). The binding pocket of R² appeared to be non-polar as hetereoaryl analogs (**2b–2d**, **2l and 2m**) led to significant loss of activity. In addition, the size of the binding pocket may be small; larger fused bicyclic groups (**2k**, **2l** and **2m**), or chlorine substitution (**2h–2j**) were associated with at least eightfold decrease in MR potency. Lastly, the only acceptable substitution on the benzyl group appeared to be fluorine (**2e–2g**) despite the loss of four to sixfold potency.

The SAR for the R^3 area is depicted in Table 3. First, the phenyl group in the R^3 region of analog 1g contributed significantly to its activity against MR. The absence of this group caused a ~ 10 -fold loss of activity (3a vs 1g). Second, the chirality of the stereogenic center in this region is important for biological activity against MR. For example, diastereomer 3b is 10-fold less active than 1g. Fluoro- and chloro-substitution (3c and 3d, respectively) maintained excellent activity. Cyclohexyl analog 3e was the most potent MR antagonist that we found for this series with an IC_{50} of 14 nM. By introducing a ring fused to the phenyl group, indanyl and tetrahydronaphthyl derivatives rendered IC_{50} of 33 and 170 nM, respectively. Interestingly, 3b, a one-carbon homolog of 1g, was much

Figure 1. Pharmacophore of the oxazolidinedione series.

Table 1In vitro SAR of R¹ moiety in the human MR NH Pro assay^a

vitro SAR of R ¹ moiety in the human MR NH Pro assay ^a			
Compds	IC ₅₀ (μM)	Compds	IC ₅₀ (μM)
$R^1 = Bn, R = H(1a)$	6.0	$R^1 = 3$ -F-phenyl R = Me(1v)	0.30
Enantiomer of 1a	>40	$R^{1} = 4\text{-CN-phenyl}$ $R = Me (1w)$	0.10
$R^1 = 3$ -OMe-benzyl R = H(1b)	1.0	$R^1 = Cyclohexyl, R = Me (1x)$	4.0
$R^1 = 3$ -OMe-benzyl R = Me(1c)	0.3	$R^{\dagger} = Cyclobuty, l R = Me (1y)$	1.2
$R^1 = 4$ -OMe-benzyl R = Me (1d)	1.0	$R^{I} = Cyclopropyl, R = Me (1z)$	2.0
$R^1 = 2$ -OMe-benzyl R = Me(1e)	0.5	$R^1 = R^1$, $R = Me (1aa)$	0.65
$R^1 = 3,5$ -diOMe-benzyl R = H (1f)	3.0	$R^{1} = R^{1} = R^{1} = Me (1bb)$	0.19
$R^1 = 3,5$ -diOMe-benzyl R = Me (1g)	0.054	$R^1 = R = Me (1cc)$	0.25
$R^{1} = 4-Cl-benzyl$ $R = Me (1h)$	0.20	$R_1 = N^{-0}$, $R = Me (1dd)$	3.0
$R^1 = 3$ -Cl-benzyl R = Me (1i)	0.28	$R^1 = \sqrt{\frac{N}{N}}$, $R = Me$ (1ee)	>10
$R^{1} = R = Me (1j)$	0.40	$R^1 = N$, $R = Me$ (1ff)	>40
$R^{1} = R = Me (1k)$	2.6	$R^{1} = N^{2}$, $R = Me(1gg)$	13
$R^1 = 4$ - CF_3 -benzyl R = Me (11)	0.57	$R^1 = \bigvee_{N}^{N} \int_{a}^{b} d^{n} d^$	16
$R^{1} = 3\text{-}CF_{3}\text{-}benzyl$ $R = Me (1m)$	0.50	$R^1 = \bigvee_{s} \int_{s}^{s} \int_{s}^{s} R = H(1ii)$	>40
$R^{1} = 4-SO_{2}Me-benzyl$ $R = Me (1n)$	>10	$R^{1} = $, $R = Me(1jj)$	2.5
$R^1 = 3$ -SO ₂ Me-benzyl R = Me (1o)	3.0	$R^1 = N$, $R = Me(1kk)$	1.5
$R^{1} = 2-Naphthyl$ $R = Me (1p)$	0.6	$R^1 = \frac{N}{r}$, $R = Me$ (111)	3.0
R ₁ = Phenyl (1q)	0.27	$R^{1} = N$, $R = Me (1mm)$	0.3
R ¹ = 4-Cl-phenyl (1 r)	0.18	$R^1 = N$, $R = Me (1nn)$	4.0
$R^{1} = 3\text{-Cl-phenyl}$ $R = Me (1s)$	2.0	R ¹ = N= N= Ne (100)	15
$R^{1} = 2\text{-Cl-phenyl}$ $R = Me (1t)$	1.0	$R^{1} = N > NH$, $R = Me(1pp)$	>40
$R^{1} = 4-F-phenyl$ $R = Me (1u)$	0.10	$R^{1} = HN$, $R = Me(1qq)$	>40

^a Values are based on the average of two experiments, each in 10-point titrations.

less active than **1g**. A heterocyclic analog (**3i**), or pyridyl replacement of the phenyl of **1g** led to more than 50-fold loss of MR potency. The combination of fluoro- and chloro-substituted phenyl groups resulted in **3j**, which displayed modest activity against MR.

The oxazolidinedione core was also a subject of modification (Table 4). Almost all core modifications, as shown by analogs

Download English Version:

https://daneshyari.com/en/article/10593557

Download Persian Version:

https://daneshyari.com/article/10593557

<u>Daneshyari.com</u>