Bioorganic & Medicinal Chemistry Letters 23 (2013) 4459-4464

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Hydroxyethylamine-based inhibitors of BACE1: P₁–P₃ macrocyclization can improve potency, selectivity, and cell activity

Lewis D. Pennington ^{a,*}, Douglas A. Whittington ^b, Michael D. Bartberger ^c, Steven R. Jordan ^c, Holger Monenschein ^{d,†}, Thomas T. Nguyen ^a, Bryant H. Yang ^a, Qiufen M. Xue ^a, Filisaty Vounatsos ^e, Robert C. Wahl ^c, Kui Chen ^c, Stephen Wood ^f, Martin Citron ^{g,†}, Vinod F. Patel ^{h,†}, Stephen A. Hitchcock ^{d,†}, Wenge Zhong ^a

^a Medicinal Chemistry, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA

^c Molecular Structure and Characterization, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA

^e Chemical Process R&D, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA

^fNeuroscience Research, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA

^g Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA

^h Sanofi-Aventis, 270 Albany Street, Cambridge, MA 02139, USA

ARTICLE INFO

Article history: Received 2 April 2013 Revised 1 May 2013 Accepted 7 May 2013 Available online 16 May 2013

Keywords: Conformational constraint Alzheimer's disease BACE1 inhibitor Macrocycle β-Secretase

ABSTRACT

We describe a systematic study of how macrocyclization in the P_1-P_3 region of hydroxyethylamine-based inhibitors of β -site amyloid precursor protein (APP)-cleaving enzyme (BACE1) modulates in vitro activity. This study reveals that in a number of instances macrocyclization of bis-terminal dienes leads to improved potency toward BACE1 and selectivity against cathepsin D (CatD), as well as greater amyloid β -peptide (A β)-lowering activity in HEK293T cells stably expressing APP_{SW}. However, for several closely related analogs the benefits of macrocyclization are attenuated by the effects of other structural features in different regions of the molecules. X-ray crystal structures of three of these novel macrocyclic inhibitors bound to BACE1 revealed their binding conformations and interactions with the enzyme.

© 2013 Elsevier Ltd. All rights reserved.

Aloysius Alzheimer reported in 1907 a previously unrecognized neurodegenerative disease clinically presented as a presenile and progressive loss of cognitive function and dementia, and characterized by the presence of neurofibrillary tangles and amyloid plaques in the brains of deceased patients.^{1,2} These biochemical hallmarks of Alzheimer's disease (AD) and their involvement in its etiology have been studied extensively over the last 30 years.³ The amyloid cascade hypothesis posits that the accumulation and aggregation of amyloid β -peptide (A β) is neurotoxic, triggering a variety of pathogenic processes leading to cognitive impairment and neuronal death.^{3,4} Since Alzheimer's initial description of this eponymous disease, aged populations have increased globally and a disease-modifying therapy has remained a critical unmet medical need for this grievous and costly illness.⁵

The rate-limiting first step of the proteolysis cascade converting β -amyloid precursor protein (APP) to the pathogenic peptides $A\beta_{40}$

and A β_{42} was revealed in 1999 to be mediated by β -site APP-cleaving enzyme (BACE1).⁶ Subsequently, gene-knockout studies in mice⁷ and genome-wide association studies in humans⁸ have lent further credence to the promise of this enzyme as a therapeutic target for AD. Despite tremendous effort by the biomedical research community, however, no inhibitor of BACE1 has yet been approved for the treatment of AD.⁹ That BACE1 is an aspartyl protease situated within neurons of the central nervous system (CNS) and shielded by the blood–brain barrier (BBB) presents a significant obstacle to this endeavor.^{9,10} Another challenge is achieving selectivity against cathepsin D (CatD), a related aspartyl protease with high sequence homology to BACE1 at the active site, the inhibition of which may give rise to toxic side-effects.^{11,12}

The first X-ray crystal structure of BACE1 was reported in 2000 as a complex with OM99-2, a potent peptide-based inhibitor incorporating a hydroxyethylene transition state isostere (BACE1 $K_i = 0.0016 \mu$ M).^{13,14} Over the last 13 years, myriad chemotypes have been disclosed as BACE1 inhibitors, including peptides and a wide variety of peptidomimetic and heterocyclic compounds.⁹ In patent applications published in December 2002, Pulley et al.

^b Molecular Structure and Characterization, Amgen, 360 Binney Street, Cambridge, MA 02142, USA

^d Takeda Pharmaceuticals, 10410 Science Center Drive, San Diego, CA 92121, USA

^{*} Corresponding author. Tel.: +1 805 447 0048; fax: +1 805 480 1337.

E-mail addresses: lewpenn@icloud.com, lewisp@amgen.com (L.D. Pennington). † Current address.

Figure 1. A selection of early macrocyclic inhibitors of BACE1.

Figure 2. Strategy for pursuing macrocyclization in the P_1 - P_3 region of hydroxyethylamine-based inhibitors of BACE1.

revealed the first macrocyclic inhibitors of BACE1, including hydroxyethylamine-based macro-bis-lactam **1** (Fig. 1; BACE1 IC₅₀ <50 μ M).¹⁵ Subsequent early reports from the laboratories of Stachel,¹⁶ Ghosh,¹⁷ and Machauer¹⁸ unveiled BACE1-inhibiting macrocycles including **2** (BACE1 IC₅₀ = 0.0040 μ M), **3** (BACE1 K_i = 0.025 μ M), and **4** (BACE1 IC₅₀ = 0.0020 μ M), respectively. Since these seminal reports, the appeal of macrocycles¹⁹ as conformationally constrained congeners of existing acyclic chemotypes with potentially improved potency, selectivity, and other drug-like properties has led to several other disclosures of macrocyclic inhibitors of BACE1.²⁰

Our laboratory recently disclosed hydroxyethylamine-based inhibitors of BACE1 represented by generic structure **5** (Fig. 2; e.g., $R^1 = H$, $R^2 = Me$, $R^3 = Me$, X = CH; BACE1 $IC_{50} = 0.11 \mu$ M; CatD $IC_{50} = 0.70 \mu$ M; Cell $A\beta_{40} IC_{50} = 0.37 \mu$ M).²¹ Inspired by the initial reports of macrocycles **1–4** in Figure 1 and the analysis of several X-ray crystal structures of Amgen inhibitors bound to BACE1,²¹ we began our exploration of macrocyclization in late 2004. We desired first to examine simple methylene-linked macrocycles closely related to **5** to allow rapid entry into this arena (e.g., **5** \rightarrow **6**; Fig. 2). A divergent synthesis hinging upon a late-stage ring-closing methathesis (RCM)–reduction sequence of simple bis-terminal

diene substrates was envisioned to allow ready comparison of both the different chain-length dienes and their cognate methylenelinked macrocycles (e.g., 5: $R^1 = -CH_2CHCH_2$, $R^2 = Me$, $R^3 = -CH_2CHCH_2$, $R^3 = -CH_2CH_$ $[CH_2]_n CHCH_2$, X = CH; 6: n = 1-3, R² = Me, X = CH).²² Though unclear at the outset of these studies what ring size and conformation would be optimal, preliminary computational studies suggested that 13- and 14-membered rings would be favored (i.e., 6: n = 2or 3).²³ Our group has also explored hydroxyethylamine-based inhibitors containing a pyridone ring with a variety of substituents penetrating into the S₂ and S₃ pockets of BACE1 (e.g., 7; BACE1 $IC_{50} = 0.076 \ \mu\text{M}$; CatD $IC_{50} > 10 \ \mu\text{M}$; Cell $A\beta_{40} \ IC_{50} = 0.21 \ \mu\text{M}$; Fig. 2).²⁴ Anticipating that modification of the linker region of the simple methylene-linked macrocycles depicted in Figure 2 might be necessary to improve BACE1 potency and CatD selectivity, as well as to modulate physicochemical properties, evaluation of more complex macrocycles based on inhibitor **7** was also planned.

The results of the study are detailed in Table 1. Dienes 8.9. and **10** exhibit similar potency toward BACE1 (BACE1 IC₅₀ = 0.11, 0.045, and 0.092 μ M, respectively)^{25,26} and similarly increased potency against CatD (CatD IC₅₀ = 0.029, 0.0063, and 0.036 μ M, respectively).²⁷ Interestingly, whereas dienes **8** and **9** display comparable decreases in cell potency versus biochemical potency (Cell AB40 $IC_{50} = 1.5$ and $0.81 \,\mu\text{M}$, respectively; Cell A_{β40} $IC_{50}/BACE1$ IC_{50} = 14 and 18, respectively), the more lipophilic diene **10** shows a much greater cell shift (Cell A β_{40} IC₅₀ >10 μ M; Cell A β_{40} IC₅₀/ BACE1 IC₅₀ >110).²⁸ Macrocycles **12**, **13**, and **14** display some analogous, and several notably different, bioassay trends from their respective parental dienes 8, 9, and 10. Whereas cyclization of diene 8 to 12-membered macrocycle 12 results in nearly identical potency toward BACE1 (BACE1 IC₅₀ = 0.12 μ M), cyclization of **9** and 10 to 13- and 14-membered macrocycles 13 and 14, respectively, leads to improved BACE1 potency (BACE1 $IC_{50} = 0.017$ and 0.036 µM, respectively). In contrast to dienes 8, 9, and 10, macrocycles 12, 13, and 14 exhibit decreased potency against CatD (CatD IC_{50} = 0.23, 0.37, and 0.89 μ M, respectively). The CatD selectivity is especially favorable for macrocycles 13 and 14 (CatD IC₅₀/BACE1 IC_{50} = 22 and 25, respectively). Compared to parental dienes 8 and 9, macrocycles 12 and 13 also display a much smaller cell shift (Cell A β_{40} IC₅₀ = 0.25 and 0.058 μ M, respectively; Cell A β_{40} IC₅₀/ BACE1 IC₅₀ = 2.1 and 3.4, respectively). Although a much greater cell shift was observed for the more lipophilic macrocycle 14 (Cell $A\beta_{40}$ IC₅₀ = 0.96 μ M; Cell $A\beta_{40}$ IC₅₀/BACE1 IC₅₀ = 27), the magnitude is still less than that observed for its diene precursor 10. As previous studies in our laboratory revealed that a neopentyl group at C6 of the chroman moiety increased BACE1 potency and N atom substitution at C8 of this ring system mitigated cell shifts in potency, albeit with lower CatD selectivity (Fig. 2; e.g., **5**: $R^1 = H$, $R^2 = t$ -Bu, R^3 = Me, X = N; BACE1 IC₅₀ = 0.0058 µM; CatD IC₅₀ = 0.0045 µM; Cell $A\beta_{40}$ IC₅₀ = 0.0031 μ M),²¹ we desired to incorporate these structural motifs into the best diene/macrocycle pair (9/13). Although the resultant diene 11 exhibits nearly 10-fold better potency toward BACE1 (BACE1 IC₅₀ = 0.0047μ M), it also displays increased potency against CatD and a large cell shift (CatD IC_{50} = 0.00084 µM; Cell A_{β40} IC_{50} = 0.066 µM; Cell A_{β40} IC_{50} /BACE1 IC₅₀ = 14). Compared to macrocycle **13**, macrocycle **15** shows a \sim 3fold increase in potency toward BACE1 (BACE1 IC₅₀ = 0.0061 μ M) and negated selectivity against CatD (CatD IC₅₀ = 0.0043μ M); pleasingly, **15** displays a negligible cell shift (Cell $A\beta_{40}$ $IC_{50} = 0.0059 \ \mu M$).

An overlay of the X-ray crystal structures of **7**, **13**, and **14** bound to BACE1 is depicted in Figure 3.²⁹ As predicted,²³ **13** and **14** display similar binding conformations and key contacts with the enzyme, with only minor differences in the linker region. The conformational constraints afforded upon macrocyclization of **9** and **10** may help to explain the increased BACE1 potency and improved CatD selectivity of **13** and **14**.³⁰ The large number of

Download English Version:

https://daneshyari.com/en/article/10593588

Download Persian Version:

https://daneshyari.com/article/10593588

Daneshyari.com