Bioorganic & Medicinal Chemistry Letters 24 (2014) 790-793

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Identification of novel 7-amino-5-methyl-1,6-naphthyridin-2(1*H*) -one derivatives as potent PI3K/mTOR dual inhibitors

Songwen Lin[†], Fangbin Han[†], Peng Liu, Jing Tao, Xuechao Zhong, Xiujie Liu, Chongqin Yi*, Heng Xu*

PKUCare Pharmaceutical R&D Center, A106-109, Biotech Innovation Works, No. 29 Life Science Park Road, Changping District, Beijing 102206, PR China

ARTICLE INFO

Received 29 October 2013

Revised 23 December 2013

Accepted 24 December 2013

Article history:

ABSTRACT

Inhibition of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway is one of the most intensively studied approaches to cancer therapy. Rational design led to the identification of novel 7-amino-5-methyl-1,6-naphthyridin-2(1*H*)-one derivatives as potent PI3K/ mTOR dual inhibitors. Design, synthesis and structure activity relationship are reported. © 2013 Elsevier Ltd. All rights reserved.

Keywords: Phosphoinositide 3-kinase Mammalian target of rapamycin Dual inhibitor Anti-tumor activity

Available online 3 January 2014

The phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway is a critical regulator of many essential cellular functions including cell growth and proliferation and is perhaps the most commonly activated signaling pathway in human cancer.^{1,2} Inhibition of this pathway by targeting PI3K, AKT and mTOR with small molecules individually or jointly is expected to have a substantial therapeutic effect and has therefore become one of the most intensively studied approaches to cancer therapy.³ Notably along this pathway, mTOR is in the PI3K superfamily and bears considerable structural

^{*} Corresponding authors. Tel.: +86-10-80712871 (H. Xu).

E-mail addresses: xuheng@pkucare-pharm.com (H. Xu), yichongqin@founder.

com (C. Yi).

[†] These authors contributed equally to this work.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \otimes 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2013.12.112

Table 1

PI3K/mTOR inhibiting activities of **9a-k**

Compound	Х	R ¹	Ar	PI3Ka ICao	mTOR IC-0
				$(nM)^{15}$	$(nM)^{16}$
PF-04691502	N	HO~O	N OMe	8.33	7.90
9a	С	но	N OMe	35.41	11.19
9b	N		S OMe	2.80	30.09
9c	C		2 OMe	13.60	39.04
9d	С		N OMe	6.45	36.54
9e	С			5.95	159.96
9f	С		N HN	2.45	12.25
9g	С			15.20	82.12
9h	С			2.90	13.91
9i	С		3 N N N	6.00	171.72
9j	С		N OMe N S H F	12.03	33.92
9k	С	HO~O	N OMe O S H F F	2.42	8.55

Figure 1. Predicted binding mode for **9k** (yellow) with PI3K γ (PDB ID: 3ML9). Hydrogen bonding interactions are shown in red dashed lines to the hinge region (Val 882) and the catalytic lysine (Lys833). Images generated using PyMol.

Table 2PI3K/mTOR inhibiting activities of 91-u

Compound	R ²	PI3K α IC ₅₀ (nM) ¹⁵	mTOR IC50 (nM)16
91	Me	23.14	62.64
9m	<u>}-</u> }-	69.11	140.9
9n		116.75	19.2
90	MeO	174.28	65.64
9p	NC	14.27	24.69
9q	F₃C-€-	174.88	78.20
9r	F	72.59	35.02
9s	F	60.51	13.88
9t	F	37.33	ND ^a
9u	CI S 55	31.16	8.49

^a ND = not determined.

similarity to class I PI3Ks.^{2,4,5} This similarity presents an opportunity to generate dual-specificity compounds, targeting PI3K/mTOR simultaneously in one pathway. These dual inhibitors could, in principle, effectively block the signal transduction and overcome feedback loops.⁶ Another advantage derived from dual inhibitors is anticipated to be the largely reduced possibility of drug resistance. In recent years, a number of dual PI3K/mTOR inhibitors have crowded into the clinical trials to generate clinical efficacy and are on the way towards regulatory approvals.^{7–13} 4-Methylpyridopyrimidinone (MPP) has proven to be a potent chemical scaffold for dual PI3K/mTOR inhibitors, demonstrating excellent anti-tumor activities in both cell proliferation assays and xenograft models.^{8,9} PF-04691502, with such a scaffold, entered into Phase I/II clinical trials in patients with early breast cancer, further elucidating its anti-tumor effectiveness.¹⁴

The key interactions between MPP and PI3K have been validated through determination of co-crystal structure of PF-04691502 bound in PI3K γ (PDB ID: 3ML9). The NH₂ functionality together with the N atom adjacent to the methyl group at the 4 Download English Version:

https://daneshyari.com/en/article/10594813

Download Persian Version:

https://daneshyari.com/article/10594813

Daneshyari.com