Bioorganic & Medicinal Chemistry Letters xxx (2013) xxx-xxx

FISEVIER

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and cytotoxic activity evaluation of 2,3-thiazolidin-4-one derivatives on human breast cancer cell lines

Marina Sala ^{a,†}, Adele Chimento ^{b,†}, Carmela Saturnino ^a, Isabel M. Gomez-Monterrey ^c, Simona Musella ^d, Alessia Bertamino ^a, Ciro Milite ^a, Maria Stefania Sinicropi ^b, Anna Caruso ^b, Rosa Sirianni ^b, Paolo Tortorella ^e, Ettore Novellino ^c, Pietro Campiglia ^{a,*}, Vincenzo Pezzi ^{b,*}

- ^a Department of Pharmaceutical Science, Division of Biomedicine, University of Salerno, Fisciano, SA 84084, Italy
- ^b Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
- ^c Department of Pharmaceutical and Toxicological Chemistry, University of Naples "Federico II", Naples 8013, Italy
- ^d Department Pharmaco-Biological, University of Messina, 98168 Messina, Italy
- ^e Department Pharmaceutical Chemistry, University of Bari "Aldo Moro", 70125 Bari, Italy

ARTICLE INFO

Article history: Received 24 April 2013 Revised 11 June 2013 Accepted 16 June 2013 Available online xxxx

Keywords: Resveratrol analogs anticancer drugs 2,3-Thiazolidin-4-one derivatives Polyphenol Breast cancer cells MCF-7 SKBR3

ABSTRACT

It is well known that resveratrol (RSV) displayed cancer-preventing and anticancer properties but its clinical application is limited because of a low bioavailability and a rapid clearance from the circulation. Aim of this work was to synthesize pharmacologically active resveratrol analogs with an enhanced structural rigidity and bioavailability. In particular, we have synthesized a library of 2,3-thiazolidin-4-one derivatives in which a thiazolidinone nucleus connects two aromatic rings. Some of these compounds showed strong inhibitory effects on breast cancer cell growth. Our results indicate that some of thiazolidin-based resveratrol derivatives may become a new potent alternative tool for the treatment of human breast cancer.

© 2013 Published by Elsevier Ltd.

Epidemiological and current laboratory studies suggest that consumption of certain types of fruits and vegetables, containing phytochemicals, is associated with reduced cancer risk.¹ Furthermore, it is postulated that dietary phytochemicals can function as chemopreventive and/or adjuvant chemotherapeutic agents. One such phytochemical is resveratrol (3,5,4'-trihydroxy-trans-stilbene) (RSV), (Fig. 1) a naturally occurring phytoalexin, readily available in the diet and a lot of health-promoting effects have been ascribed to it.

Resveratrol, first identified as a bioactive compound in 1992, is found in several plants, particularly in the skin of red grapes.²

This compound has elicited much attention in recent years, as a potential anticancer agent, since its inhibitory effect on carcinogenic processes (initiation, promotion, and progression) was first reported in 1997.³ Thereafter extensive studies have verified the cancer-preventing and anticancer properties of resveratrol in various murine models of human cancer, including skin cancer (both chemically and ultraviolet B-induced), gastric and colorectal can-

cer, lung cancer, breast cancer, ovarian and prostate cancer, hepatoma, neuroblastoma, fibrosarcoma, pancreatic cancer, and leukemia.⁴ Several studies, using both in vitro and in vivo model systems, have illustrated resveratrol's capacity to modulate a multitude of signaling pathways associated with cellular growth and division, apoptosis, angiogenesis, invasion, and metastasis.⁵

In particular, it exhibits an action in both hormone-sensitive and hormone-resistant breast cancer cells and shows cytostatic activity and determines cell growth arrest; these properties seem to be related to regulation of xenobiotic carcinogen metabolism and antiinflammatory, antiproliferative, and pro-apoptotic effects. The phytoestrogenic character of RSV was confirmed by its capacity to bind and activate α - and β -estrogen receptors (ERs) regulating transcription of estrogen-responsive target genes. However,

Figure 1. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) (RSV).

0960-894X/\$ - see front matter © 2013 Published by Elsevier Ltd. http://dx.doi.org/10.1016/j.bmcl.2013.06.051

 $[\]ast$ Corresponding authors. Fax: +39 089 969353 (P.C.); fax: +39 0984 493271 (V.P.).

E-mail addresses: pcampigl@unisa.it (P. Campiglia), v.pezzi@unical.it (V. Pezzi).

[†] These authors equally contributed to this work.

Figure 2. Structure of *cis*-resveratrol (**I**) and a *cis*-conformation mimetic of resveratrol containing an thiazolidin-4-one moiety.

although a number of studies have been conducted, the effects of RSV on ERs remain controversial. For example, with MCF-7 cells

in culture, Gehm et al. 7 showed that RSV (3–10 μ M) is a superagonist when combined with estradiol (E2), while Lu and Serrero 8 reported ER antagonism of RSV (5 μ M) in the presence of E2 and partial agonism in its absence. 8 Bowers et al. 9 observed partial to full agonism in CHO-K1 cells transfected with ER α or ER β and reporter genes based on various estrogen receptor element (EREs). The authors showed that RSV (100 μ M) acts as a mixed agonist/antagonist in cells transiently transfected with ER and mediates higher transcriptional activity when bound to ER β than to ER α . Moreover, RSV showed antagonist activity with ER α , but not with ER β . 9 Based on these reports, it appears that the ability of RSV to act as an ER agonist varies between different cell types and dosage. Resveratrol acts as an estrogen-agonist or antagonist that depends

Table 1Library of synthesized 2,3-thiazolidin-4-one (**3-14**)

Entry	Arylamine	Aryl-aldehyde	2,3-Thiazolidin-4-one derivative	Yield (%)
1	$HO \longrightarrow NH_2$	$\bigcap_{O} H$	HO 3	93
2	$HO \longrightarrow NH_2$	OH OH OH OH	O S N OH OH	47
3	$HO \longrightarrow NH_2$	H OH OH	O S O OH HO 5	63
4	$HO \longrightarrow NH_2$	HO OH 2d	ON OH OH	80
5	$HO \longrightarrow NH_2$	$\bigcup_{O}^{H} \bigcup_{2e}^{O}$	HO 7	85
6	$HO \longrightarrow NH_2$	H O O O O O O O O O O O O O O O O O O O	HO O O	90
7	$HO \longrightarrow NH_2$	H O O O O O O O O O O O O O O O O O O O	8 0 8 N N O O	90

Download English Version:

https://daneshyari.com/en/article/10595473

Download Persian Version:

https://daneshyari.com/article/10595473

<u>Daneshyari.com</u>