Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

Tetrahydroquinoline derivatives as CRTH2 antagonists

Jiwen Liu*, Yingcai Wang, Ying Sun, Derek Marshall, Shichang Miao, George Tonn, Penny Anders, Joel Tocker, H. Lucy Tang, Julio Medina

Amgen Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, USA

ARTICLE INFO

ABSTRACT

Article history: Received 22 September 2009 Revised 20 October 2009 Accepted 21 October 2009 Available online 25 October 2009

Keywords: CRTH2 PGD2 Antagonists GPCR Allergic diseases Tetrahydroquinoline SAR Lead optimization

CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells), also known as DP₂, is a G-protein coupled receptor related to the N-formyl peptide receptor (FPR) subfamily of chemoattractant receptors. Its endogenous ligand is prostaglandin D₂ (PGD₂). PGD₂ is the major cyclooxygenase product formed and secreted by activated mast cells during allergic reactions.^{1–3} PGD_2 also signals through prostanoid D (DP or DP₁) receptor. The DP receptor is primarily expressed on airway epithelium, smooth muscle and platelets, while CRTH2 is selectively expressed on Th2 cells, T cytotoxic type 2 (Tc2) cells, eosinophils, and basophils.⁴⁻⁶ Stimulation of CRTH2 by PGD₂ mediates multiple inflammatory responses, such as chemotaxis of eosinophils, basophils and Th2 cells, eosinophil activation and degranulation, cytokine production from Th2 T cells, and leukotriene production by mast cells.^{7–13} Therefore, blockade of CRTH2 is likely to be beneficial in the treatment of allergic diseases triggered by PGD₂.

Several research groups, including ours, discovered that tetrahydroquinoline derivatives are potent CRTH2 antagonists.14-19 These compounds were of special interest to us, because to our knowledge, it was the only series of CRTH2 antagonists devoid of a carboxylic acid moiety. Here we report the discovery, optimization and structure activity relationship (SAR) of the tetrahydroquinoline derivatives.

* Corresponding author. E-mail address: jiwenl@amgen.com (J. Liu).

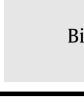
Tetrahydroquinoline 1 (Table 1), discovered in a high throughput screen, inhibited the binding of ³H-PGD₂ to hCRTH2 receptors on 293 cells with an IC₅₀ of 0.043 μ M (Table 1).²⁰ Compound **1** also inhibited CRTH2 mediated cell migration in response to PGD₂ with an EC₅₀ of 11 nM using hCRTH2 stably transfected CEM cells.²¹ The

A series of tetrahydroquinoline-derived inhibitors of the CRTH2 receptor was discovered by a high

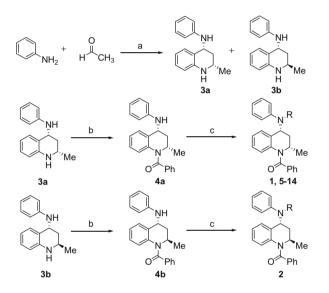
throughput screen. Optimization of these compounds for potency and pharmacokinetic properties led

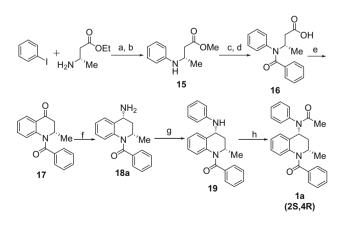
Table 1

to the discovery of potent and orally bioavailable CRTH2 antagonists.


Compd	Chiral Center	CRTH2 IC_{50}^{a} in buffer (μM)	CRTH2 IC ₅₀ ª in plasma (µM)
1 2 1a ^b 1b ^b	Racemic Racemic (2S,4R) (2R,4S)	0.043 >10 0.017 0.42	1.05 0.44 >10

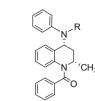
^a Displacement of ³H-PGD₂ from the CRTH2 receptor expressed on 293 cells. Assay run in buffer containing 0.5% BSA or in 50% plasma. See Ref. 20 for assay protocol. Values are means of three experiments, standard deviation is ±30%. ^b ee >99%.


© 2009 Elsevier Ltd. All rights reserved.


⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.10.094

structure of compound **1** was determined to be *cis* by synthesis²² (Scheme 1) and NMR studies.²³ Conversely, the *trans* isomer (**2**) had weak CRTH2 activity. Furthermore, the stereo-selective synthesis (Scheme 2) indicated the (2*S*,4*R*) enantiomer **1a** was responsible for the majority of the CRTH2 activity of racemic compound **1** (Table 1).

Compound **1** was synthesized according to Scheme 1. Reaction of aniline with acetaldehyde in ethanol at room temperature afforded a mixture of *cis–trans* isomers **3a** and **3b** in >95% yield. Separation of the *cis* isomers **3a** was achieved in 35% yield by recrystallization from 10% EtOAc/Hex. The *trans* isomer **3b** was obtained in 30% yield from the purification of the mother liquor using silica column chromatography. Selective acylation of **3a** and **3b** with benzoyl chloride at 1-N position afforded amides **4a** and **4b**, respectively, in 90% yield. Reaction of **4a** and **4b** with acetyl chloride afforded **1** and **2**, respectively, in 85% yield. Compounds **5–14** (Table 2) were synthesized from *cis* intermediate **4a** using reductive amination, sulfonylation or acylation.

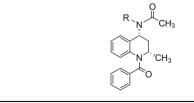


Scheme 1. Racemic synthesis of 1, 2 and 5–14. Reagents and conditions: (a) EtOH, rt, 24 h, 35% for compound 6 after recrystallization in 10% EtOAc/hexanes; (b) PhCOCI, triethylamine, DCM, rt, 24 h, 90%; (c) for amines: aldehydes, Na(OAc)₃BH, ClCH₂CH₂CI, rt, 20 h, ~80%; for sulfonamides: sulfonyl chloride, DMAP, pyridine, rt, 3 h, 60%; for amides, acid chlorides, NaH, THF, rt, 20 h, 85%.

Scheme 2. Stereo-selective synthesis of **1a**. Reagents and conditions: (a) Cul, potassium carbonate, DMF, water, 90 °C, 48 h, 70%; (b) SOCl₂, MeOH, rt, 12 h, 90%; (c) PhCOCl, triethylamine, DCM, rt, 24 h, 90%; (d) LiOH, THF/MeOH/water, rt 4 h, 95%; (e) oxalyl chloride, DMF, DCM, 0 °C-rt, 3 h, then AlCl₃, DCM, 0 °C-rt, 12 h, 60%; (f) ammonium acetate, sodium cyanoborohydride, MeOH, 70 °C, 2 days, 85%; (g) phenyl boronic acid, pyridine, DMF, copper(II) acetate, air, 60 °C, overnight, 20%; (h) acetyl bromide, NAH, THF, 0 °C-rt, 3 h, 85%.

Table 2

Compd ^a	R	CRTH2 IC_{50}^{b} in buffer (μM)
1	-COMe	0.043
4a	-H	>50
5	-CH ₂ CH ₃	3.17
6	-SO ₂ Ph	5.50
7	-COPh	0.105
8	$-CO(CH_2)_3CH_3$	0.064
9	$-CO(CH_2)_2CO_2H$	0.005
10	$-CO(CH_2)_2CO_2NH_2$	0.029
11	-COCH ₂ CO ₂ H	0.54
12	$-CO(CH_2)_3CO_2H$	0.022
13	-COCH=CHCO ₂ H	2.28
14	-CO(1,3-Ph)CO ₂ H	40.3


^a Mixture of racemic mixture of (2*S*,4*R*) and (2*R*,4*S*) enantiomers.

^b Displacement of ³H-labeled PGD₂ from the CRTH2 receptor expressed on 293 cells. See Ref. 20 for assay protocol. Values are means of three experiments, standard deviation is $\pm 30\%$.

The stereo-selective synthesis (Scheme 2) of **1a** began with a Cul catalyzed coupling of iodobenzene with the (*S*)- β -amino acid ester.²⁴ Amide formation of the coupling product (**15**) with benzoyl chloride followed by ester hydrolysis yielded acid **16**. Conversion of the carboxylic acid to the acid chloride followed by an intramolecular Friedel–Crafts acylation provided ketone **17**.²⁵ Reductive amination with ammonium hydroxide produced primary amine **18a**, which was coupled with phenyl boronic acid in the presence of copper acetate to give compound **19**.¹⁴ Reaction of **19** with acetyl bromide afforded compound **1a** ((*2S*,*4R*)-enantiomer) with >99% ee. Compound **1b** ((*2R*,*4S*)-enantiomer) was obtained from chiral HPLC separation of racemate **1**.²⁶

Compounds **22**, **24** and **25** (Table 3) were synthesized according to Scheme 3. Reductive amination of ethyl acetoacetate with aniline afforded ester **20**. Saponification of **20** followed by intramolecular Friedel–Crafts acylation afforded ketone **21**.²⁷ Amide formation with benzoyl chloride followed by a reductive amination yielded compound **18**. Finally, compound **22** was obtained from acetamide formation of **18** with acetyl bromide. Compounds **24**

Table 3

Compd ^a	R	CRTH2 IC_{50}^{b} in buffer (μM)
1	Ph	0.043
22	Н	3.62
24	Et	0.25
25	Bn	0.43

^a Mixture of racemic mixture of (2S,4R) and (2R,4S) enantiomers.

^b Displacement of ³H-labeled PGD₂ from the CRTH2 receptor expressed on 293 cells. See Ref. 20 for assay protocol. Values are means of three experiments, standard deviation is $\pm 30\%$.

Download English Version:

https://daneshyari.com/en/article/10595606

Download Persian Version:

https://daneshyari.com/article/10595606

Daneshyari.com