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a b s t r a c t

We here report the discovery of novel Plasmodium falciparum enoyl-ACP reductase (PfENR) inhibitors as
new antimalarial hits through ligand- and structure-based drug design approaches. We performed 2D
and 3D QSAR studies on a set of rhodanine analogues using hologram QSAR (HQSAR), comparative molec-
ular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques.
Statistical and satisfactory results were obtained for the best HQSAR (r2 of 0.968 and q2

LOO of 0.751),
CoMFA (r2 of 0.955 and q2

LOO of 0.806) and CoMSIA (r2 of 0.965 and q2
LOO of 0.659) models. The information

gathered from the QSAR models guided us to design new PfENR inhibitors. Three new hits were predicted
with potency in the submicromolar range and presented drug-like properties.

� 2013 Elsevier Ltd. All rights reserved.

Plasmodium falciparum (Pf) is the most letal specie of Plasmo-
dium genus infecting human beings, leading to malaria, a major
growing threat to public health.1,2 According to the World Health
Organization (WHO), about 220 million cases are diagnosed and
approximately 1 million deaths per year, with over 2 billion people
at risk for the disease.3 The resistance to known antimalarials and
the lack of an effective vaccine have created an urgent need to dis-
cover new biologically active compounds.4,5 Potential biochemical
targets for antimalarial drug discovery have been identified after
the completed sequencing of the P. falciparum genome in 2002.6–8

The discovery of a type II fatty acid biosynthesis pathway (FAS II)
in Plasmodium falciparum has opened new opportunities for malaria
drug development.9 Fatty acids play a vital role in cells as metabolic
precursors for biological membranes and energy storage.10 Many of
FAS-II enzymes are involved in malarial viability. Particularly, the
enoyl-ACP reductase (PfENR), which catalyzes the last reaction in
each elongation circle, has been recognized and validated as an
important drug target in P. falciparum.11,12

An important strategy in designing new PfENR inhibitors is to
identify key properties of the chemical structures related to their
capability to induce biological response as a consequence of the
PfENR inhibition. In last decades, quantitative structure–activity
relationships (QSAR) have been successfully applied in the

development of relationships between structure properties of
chemical substituent and their biological activities.13–15 Ligand-
based QSAR approaches and receptor-based molecular docking
studies are often complementary to each other and important in
the development of new potent inhibitors.16–20

In this work, we report the identification of PfENR inhibitors as
new antimalarial hits using an integration of ligand- and structure-
based drug design approaches. To do so, we have employed a com-
bination of a 2D-QSAR approach based on specialized molecular
fragments, called hologram QSAR (HQSAR), 3D-QSAR using Com-
parative Molecular Field Analysis (CoMFA), and Comparative Sim-
ilarity Indices Analysis (CoMSIA) methods for a series of rhodanine
(2-thioxothiazolidin-4-one) analogs as PfENR inhibitors. In addi-
tion, molecular docking of the rhodanine analogs into the active
site of PfENR was also carried out to identify the binding orienta-
tions and the protein–inhibitor interactions responsible for the ob-
served activity. Hence, the information gathered by performing an
integration of ligand- and structure-based approaches could help
to better understand the structure–activity relationships and to de-
sign of new potent inhibitors of PfENR.

The QSAR studies were performed on a series of 36 rhodanine
derivatives as inhibitors of PfENR, to which the in vitro enzymatic
potency values (measured by IC50) were collected from the litera-
ture.21 The IC50 (lM) values were expressed in negative logarith-
mic units, pIC50 (�logIC50) and used as dependent variables in
QSAR analysis. The chemical structures and corresponding pIC50

are listed in Table 1. The IC50 values were obtained by the same
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experimental conditions, and the pIC50 values span a sufficiently
wide range of three orders of magnitude. The compounds of both
training and test sets were randomly selected subject to the con-
straint to ensure complete and representative coverage across
the entire range of pIC50 values. The models were externally vali-
dated using a test set with 8 compounds (Table 1) and were not in-
cluded in the QSAR models development process.

SYBYL-X 1.2 (Tripos Inc., St. Louis, USA) was employed in QSAR
modeling analyses, calculations and visualizations. All structures
were built and energy minimized under the Tripos force field with
a distance-dependent dielectric constant and Powell conjugate
gradient method with a convergence criterion of 0.005 kcal/
(mol Å). Partial atomic charges were calculated by the AM1-BCC
method22 as implemented in QUACPAC.23

HQSAR is a modern 2D-QSAR approach that uses molecular
holograms as descriptors. HQSAR models can be affected by a num-
ber of parameters concerning hologram composition to get to
models with the highest statistical parameters, such as hologram
length (53–401), fragment size (2–5, 3–6, 4–7, 5–8, 6–9 and 7–
10 atoms), and fragment distinction (atoms, A; bonds, B;
connections, C; chirality, Ch; donor and acceptor, DA). Therefore,
several combinations of these parameters were considered during

the HQSAR modeling runs. The patterns of fragment counts from
the training set molecules were then related to the experimental
potency values using the full cross-validated r2 (q2) partial least
squares (PLS) leave-one-out (LOO) and leave-many-out (LMO)
methods to assess model stability, robustness and statistical signif-
icance. The statistical results of HQSAR analyses for various frag-
ment distinctions using the default fragment size (4-7) are
presented in Table S1 (Supplementary data). The predictive ability
of the models was assessed using the predictive correlation coeffi-
cient (r2

pred) defined using Eq. 1.24
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where N is the number of compounds; yi
pred is the predicted biolog-

ical activity value of the i-th compound; yi is the experimental value
of biological activity; ytest

mean is the mean of the biological activity val-
ues of the test set compounds.

Although a measure of internal consistency, available in the
forms of q2 and r2, the most valuable test of a QSAR model is
its ability to predict the activity of compounds not included in
the training set. In this way, the predictive power of the best
HQSAR model derived from the training set molecules (fragment
distinction A/C/DA; fragment size 5–8, Table 2) was assessed by
predicting the pIC50 values for 8 test set molecules (compounds
29–36, Table 1), which were completely excluded from model
generation.

The external validation results are listed in Table 3, and the gra-
phic results for the experimental versus predicted activities of both
compound sets (training and test sets) are displayed in Fig. S1A
(Supplementary data). The predicted values fall closely to the
experimental pIC50 values, deviating by less than 0.508 log units.
The excellent agreement between experimental and predicted
pIC50 values for the test set compounds indicates the robustness
of the HQSAR model (r2

pred ¼ 0:878). Hence, in addition to good sta-
tistical quality and internal consistency, the best HQSAR model has
shown high predictive power for novel PfENR inhibitors within this
structural diversity.

Besides predicting the potency of untested compounds, HQSAR
analyses also provide important hints about what molecular frag-
ments are directly related to biological activity, which can be visu-
alized through contribution maps. The colors of the red end of the
spectrum (red, red orange, and orange) represent unfavorable or
negative contribution to the activity, while the green end (yellow,
green blue, and green) reflects otherwise; a positive contribution to
the activity. Colored white are the atoms with intermediate contri-
bution to the activity. The individual atomic contributions for the
most (1) and least (34) potent compounds of the data set are
shown in Figure 1. According to the contribution maps, the molec-
ular fragments corresponding to the 5-benzylidene (R1-phenyl
ring) and the 2-thioxothiazolidin-4-one moieties are positive con-
tributions to potency.

The main regions that negatively contribute to biological activ-
ity include the methoxy group linked to the R1-phenyl ring and the
R2-phenyl ring. These groups could be replaced by other substitu-
ents with different structural and physicochemical features with
the aim to increase the affinity and potency of the compounds
studied in this work.

Structural alignment is a crucial component in 3D-QSAR stud-
ies, since it affects the statistical results of CoMFA and CoMSIA.
The accuracy and reliability of the model depends directly on the
structural alignment rule.25–28 Therefore, three alignments were
tested in this work, one receptor-dependent and two receptor-
independent approaches. We used the rigid-body fit, ROCS29–31 li-
gand-based and structure-based alignments schemes, referred as

Table 1
Chemical structures and corresponding pIC50 values of PfENR inhibitors

S
N

O

S

R2

R1

Training set

Compound R1 R2 pIC50

1 3,4-OH 3,4-Me 6.602
2 3,4-OH 3-Cl 6.097
3 3-OC2H5, 4-OH 2-Me 5.022
4 3-Br, 4-OH 3-Me 5.009
5 3-OC2H5, 4-OH 4-Br 4.857
6 3-NO2, 4-Cl 3-Cl 4.730
7 3-Br, 4-OMe 3-NO2 4.627
8 3-NO2, 4-OH 2,3-fused phenyl 4.535
9 4-OH 4-NO2 5.387
10 4-OH 4-OC2H5 5.081
11 4-OH 3-F 5.066
12 4-OH H 5.032
13 4-OH 4-Br 4.955
14 4-OH 4-Cl 4.676
15 4-OMe 3-CF3 5.187
16 4-COOCH3 3-OH 5.081
17 4-NO2 3-CF3 4.896
18 4-OMe 3-OMe 4.879
19 4-NO2 4-F 4.833
20 4-CO2H5 3-Cl 4.724
21 4-COOH 3-Cl 5.060
22 4-COOH 4-OH 5.056
23 4-COOH H 5.041
24 4-COOH 3-OMe 5.009
25 3-OMe, 4-OH, 5-Cl 4-NO2 5.004
26 3,4-OH, 5-Br 3-CF3 5.004
27 2-COOH 3-Cl 4.921
28 2-COOH 4-F 4.573

Test set
29 3,4-OH 2,4-Me 6.301
30 3,4-OH 4-Cl 5.102
31 3-OH, 4-OMe 4-OMe 5.004
32 3-OH H 5.066
33 3-OH 3-OMe 5.041
34 3-OMe 4-COOMe 4.565
35 4-OH 3-OMe 4.910
36 4-COOH 2-F 4.790
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