Bioorganic & Medicinal Chemistry Letters 23 (2013) 223-227

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Further exploration of M₁ allosteric agonists: Subtle structural changes abolish M₁ allosteric agonism and result in *pan*-mAChR orthosteric antagonism

Douglas J. Sheffler ^{a,b,c,†}, Christian Sevel ^{a,†}, Uyen Le ^{a,b,c}, Kimberly M. Lovell ^{a,b,c}, James C. Tarr ^{b,c}, Sheridan J. S. Carrington ^{a,b}, Hyekyung P. Cho ^{b,c}, Gregory J. Digby ^a, Colleen M. Niswender ^{a,b,c}, P. Jeffrey Conn ^{a,b,c}, Corey R. Hopkins ^{a,b,c,d}, Michael R. Wood ^{a,b,c,d}, Craig W. Lindsley ^{a,b,c,d,*}

^a Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^b Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^c Vanderbilt Specialized Chemistry Center for Probe Development (MLPCN), Nashville, TN 37232, USA

^d Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA

ARTICLE INFO

Article history: Received 9 August 2012 Revised 18 October 2012 Accepted 29 October 2012 Available online 9 November 2012

Keywords: TBPB M1 Allosteric agonist Muscarinic receptor

ABSTRACT

This letter describes the further exploration of two series of M_1 allosteric agonists, TBPB and VU0357017, previously reported from our lab. Within the TPBP scaffold, either electronic or steric perturbations to the central piperidine ring led to a loss of selective M_1 allosteric agonism and afforded *pan*-mAChR antagonism, which was demonstrated to be mediated via the orthosteric site. Additional SAR around a related M_1 allosteric agonist family (VU0357017) identified similar, subtle 'molecular switches' that modulated modes of pharmacology from allosteric agonism to *pan*-mAChR orthosteric antagonism. Therefore, all of these ligands are best classified as bi-topic ligands that possess high affinity binding at an allosteric site to engender selective M_1 activation, but all bind, at higher concentrations, to the orthosteric ACh site, leading to non-selective orthosteric site binding and mAChR antagonism.

© 2012 Elsevier Ltd. All rights reserved.

Schizophrenia is a complex psychiatric disorder characterized by a combination of positive and negative symptoms along with significant cognitive dysfunction.^{1,2} Current antipsychotic therapies can address the positive symptoms, but the negative and cognitive symptoms remain poorly managed, if at all, and are key predictors of functional disability.^{3–6} A large number of anatomical, molecular, genetic, preclinical behavioral and human clinical studies have provided strong evidence that agents able to enhance cholinergic transmission or activate muscarinic acetylcholine receptors (mAChRs, M1-M5), notably M1, have exciting therapeutic potential for the treatment of the positive, negative and cognitive symptoms of schizophrenia as well as cognitive dysfunction in other CNS disorders.⁷⁻¹⁶ However, previous compounds developed to selectively activate M₁ receptors have failed in clinical development due to a lack of true specificity for this receptor subtype.⁷⁻¹⁸ Often, many of the compounds bind to the orthosteric ACh binding site, which can result in adverse side effects as a result of M₂ and M₃ activation.⁷⁻¹⁸ Recently, multiple industrial and academic laboratories, including ours, have targeted less conserved allosteric sites on the M₁ receptor in an attempt to develop highly selective

E-mail address: craig.lindsley@vanderbilt.edu (C.W. Lindsley).

[†] These authors contributed equally to this work.

 M_1 activators (both M_1 allosteric agonist and M_1 positive allosteric modulators, PAMs) and avoid activation of M_2 and $M_3.^{17-39}$

For example, we have previously reported on TBPB 1, a potent, CNS penetrant and highly selective M₁ allosteric agonist that displays robust efficacy in multiple preclinical antipsychotic and cognition models, as well as significant impact on $A\beta$ production.¹⁹ Mutagenesis and modeling efforts identified a key H-bond interaction between the central piperidine nitrogen of TBPB and Thr83 of M₁, likely contributing to TBPB's affinity for this M₁ allosteric binding site.⁴⁰ In multiple Letters, we have also described SAR around TBPB 1, and found that halide substitutions were well tolerated on the benzimidazole core 2, as well as amide 3, sulfonamide 4 and urea 5 replacements for the benzyl amine of the distal basic piperidine nitrogen (Fig. 1); however, SAR was 'shallow'.²¹ Moreover, these subtle structural modifications could engender D₂ antagonism, along with M₁ allosteric agonism, affording molecules with an attractive pharmacological profile for the treatment of schizophrenia.²¹ In this Letter, we describe a more detailed pharmacological profile of 1, along with the as yet unexplored SAR of the central piperidine ring of 1, and the discovery of subtle 'molecular switches⁴¹ that modulate modes of pharmacology from allosteric agonism to pan-mAChR orthosteric antagonism.

Our previous characterization of TBPB revealed that this compound activates M_1 receptors.¹⁹ Here, we confirm that TBPB is a selective M_1 partial agonist and induces responses in CHO cells

^{*} Corresponding author.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2012.10.132

Figure 1. Structures of the M_1 allosteric agonist TBPB (1), highlighting the key Hbond interaction with Thr83 for allosteric binding at M_1 , and analogs **2–5** of TBPB that retain selective M_1 agonism.

Figure 2. Pharmacological profile of TBPB. (A) rM_1-rM_5 concentration–response curves (CRCs) of TBPB screened in agonist mode. rM_1 EC_{50} = 79.6 nM (pEC₅₀ = 7.10 ± 0.07), 69.3 ± 6.4% ACh Max, $rM_2-rM_5 > 30 \ \mu$ M. (B) rM_2-rM_5 CRCs of TBPB screened as antagonists. rM_2 IC_{50} = 1.29 μ M (pIC₅₀ = 5.89), rM_3 IC_{50} = 5.48 μ M (pIC₅₀ = 5.26), rM_4 IC_{50} = 493 nM (pIC₅₀ = 6.31), rM_5 IC_{50} = 3.97 μ M (pIC₅₀ = 5.40), and all reduce an ACh EC_{80} to baseline. Human CRCs not shown. Screened as antagonists, hM_2 IC_{50} = 3.57 μ M (pIC₅₀ = 5.46), hM_3 IC_{50} = 2.3 μ M (pIC₅₀ = 5.46), hM_3 IC_{50} = 2.3 μ M (pIC₅₀ = 5.63), hM_4 IC_{50} = 734 nM (pIC₅₀ = 6.13), hM_5 IC_{50} = 4.9 μ M (pIC₅₀ = 5.31), and all reduce an ACh EC_{80} to baseline.

expressing rM₁ receptors, but not rM₂–M₅Rs (Fig. 2A). Interestingly, TBPB also inhibits ACh-induced responses in cells expressing M₂–M₅ receptors, suggesting additional activity at an orthosteric site (Fig. 2B). Based on this finding, TBPB can be described as a bi-topic ligand that binds M₁ at both an allosteric site and the orthosteric site, the former of which confers functional M₁ agonism and the latter of which confers orthosteric antagonism. These findings are similar to previously characterized M1 agonists including AC-42,^{32,33} 77-LH-28-1,³⁶ VU0364572,^{28,30} and VU0357017,^{26,30} which have been characterized as bi-topic ligands.^{42,43}

As the central piperidine nitrogen of TBPB is thought to be critical (H-bond with Thr83) for allosteric binding,⁴⁰ we sought to disrupt this key H-bond both electronically and conformationally by installation of a β -fluorine atom (to attenuate basicity and H-bond acceptor ability) and replacement of the piperidine with a [3.3.0] system, respectively.²¹ Our expectation was that these structural modifications would abolish binding at the allosteric site, and that these analogs would bind solely at the orthosteric site and function as *pan*-mAChR antagonists. The synthesis was straightforward (Scheme 1), following the synthetic route previously developed.²²

When screened as an agonist, neither 9 nor 10 elicited M₁ activation, suggesting that binding at the allosteric site had been abolished by disrupting the key H-bond interaction with Thr83.40 Interestingly, both 9 and 10 proved to be weak, micromolar pan-mAChR antagonists when screened in the presence of an EC_{80} of ACh against M₁-M₅. The [3.3.0] analog **10** was a weak M₁ antagonist (pIC₅₀ = 5.20 ± 0.04, IC₅₀ = 6.4 μ M, -1.07 ± 1.3% ACh Max) and $IC_{50}s > 10 \,\mu\text{M}$ against M_2-M_5). The β -fluoro analog **9** (Fig. 3A) was slightly more potent at M_1 (rat M_1 IC₅₀ = 4.9 μ M $(pIC_{50} = 5.31 \pm 0.17)$, 13.6 ± 1.5% ACh Max, M₂, M₃ M₄, and M₅ $IC_{50} > 10 \mu M (pIC_{50}s < 5)$ (human $M_1 - M_5$ data not shown, but similar)). Radioligand binding experiments with [³H]-NMS (Fig. 3B) and dissociation kinetic experiments (Fig. 3C) are consistent with 9 acting as an ACh orthosteric site antagonist. Thus, a single fluorine atom serves as 'molecular switch' to modulate the pK_a of the central piperidine nitrogen atom (from ~ 11 to 9.4),⁴⁴ and likely prohibits its ability to accept a key H-bond from Thr83 in the M₁ allosteric site, an interaction that may confer M₁ functional agonist activity.40

Interestingly, our dissociation kinetics experiments with TBPB indicate that this compound also does not alter the off-rate of [³H]-NMS. These data are inconsistent with those of Jacobson et al., 2010, where TBPB was shown to slow the off-rate of [³H]-NMS.⁴⁰ The most likely explanation for the discrepancy between our results and those of Jacobson et al., 2010 is a difference in our assay protocols. Jacobson et al. allow 1 h for equilibrium to occur between atropine and [³H]-NMS at room temperature for their dissociation kinetic studies whereas we allow 3 h at room temperature for this equilibrium to occur. Traditionally, when a 1 h equilibrium is utilized for M₁ dissociation studies, the studies are performed at 37 °C.⁴³ Incubation for only 1 h at room temperature

Scheme 1. Synthesis of TBPB analogs 9 (VU0465132) and 10 (VU0546403).

Download English Version:

https://daneshyari.com/en/article/10596176

Download Persian Version:

https://daneshyari.com/article/10596176

Daneshyari.com