Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and evaluation of pyridylbenzofuran, pyridylbenzothiazole and pyridylbenzoxazole derivatives as ¹⁸F-PET imaging agents for β-amyloid plaques

Britt-Marie Swahn^{a,*}, Johan Sandell^a, David Pyring^a, Margareta Bergh^a, Fredrik Jeppsson^b, Anders Juréus^b, Jan Neelissen^c, Peter Johnström^{a,d}, Magnus Schou^{a,d}, Samuel Svensson^b

^a Department of Medicinal Chemistry, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden

^b Department of Neuroscience, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden

^c Department of DMPK, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden

^d Department of Clinical Neuroscience, Karolinska Institutet, S-171 76 Stockholm, Sweden

ARTICLE INFO

Article history: Received 4 April 2012 Revised 2 May 2012 Accepted 3 May 2012 Available online 11 May 2012

Keywords: Alzheimer's disease β-Amyloid plaque Positron emission tomography PET Fluorine-18 Pyridylbenzofuran Pyridylbenzothiazole Pyridylbenzoxazole

ABSTRACT

The synthesis and SAR of new β -amyloid binding agents are reported. Evaluation of important properties for achieving good signal-to-background ratio is described. Compounds **27**, **33**, and **36** displayed desirable lipophilic and pharmacokinetic properties. Compound **27** was further evaluated with autoradiographic studies in vitro on human brain tissue and in vivo in Tg2576 mice. Compound **27** showed an increased signal-to-background ratio compared to flutemetamol **4**, indicating its suitability as PET ligand for β -amyloid deposits in AD patients. The preparation of the corresponding ¹⁸F-labeled PET radioligand of compound **27** is presented.

© 2012 Elsevier Ltd. All rights reserved.

Alzheimer's disease (AD) is a neurodegenerative brain disorder characterized clinically by progressive decline of cognitive function. Pathologically AD is characterised by amyloid plaques¹ containing $A\beta$ peptide(s), and by neurofibrillary tangles (NFTs) containing hyper-phosphorylated tau protein. Aß peptides are produced from membrane-bound β-amyloid precursor protein (APP) by the sequential proteolytic cleavage of two aspartyl proteases, β - and γ -secretase. Amyloid plaques accumulate prior to the onset of clinical symptoms. Detection of amyloid pathology early in disease progression, even before a clinical diagnosis of AD can be established, is therefore a key objective of current research in AD diagnosis. Biochemical measures of A^β and tau in CSF have been shown to have utility as potential diagnostic tools, but there is also a need for $A\beta$ plaque specific binding agents that can be used as PET (positron emission tomography) ligands for early diagnosis and monitoring of AD progression in the living brain.

Several types of β -amyloid imaging agents have been synthesized and evaluated including PIB **1**,² SB-13 **2**,³ AZD2184 **3**,⁴ flutemetamol **4**,⁵ FDDNP **5**⁶ and AV45 **6**⁷ (Fig. 1). The reporting of several additional core structures that are not mutually

* Corresponding author. Tel.: +46 8 553 264 74.

E-mail address: britt-marie.swahn@astrazeneca.com (B.-M. Swahn).

displaceable, suggests that there are a number of different binding sites on β -amyloid in the A β plaques of AD patients.⁸ The most examined compound, PIB **1**, has been tested clinically and demonstrated in ¹¹C-PET studies to be a potential biomarker for the visualization of A plaques in AD brains.^{2b,9} However, ¹¹C has a short half-life ($t_{1/2}$ = 20 min) and the supply of ¹¹C agents will likely be limited to facilities with an on-site cyclotron. To broaden the utility of A β plaque detecting agents, the focus has turned into developing ¹⁸F-labeled imaging agents ($t_{1/2}$ = 110 min).¹⁰

In order to obtain good sensitivity and allow for detection of low levels of A β plaques, and thus monitor β -amyloid lowering therapies with high sensitivity, the non-specific binding of A β PET ligands must be minimized.

We have previously concluded that it is essential to keep lipophilicity as low as possible in order to decrease non-specific binding and increase the wash out rate of non-specific binding.¹¹ Thus we have continued to focus on pyridine derivatives. In the search for suitable ¹⁸F-labeled PET ligands we explored three different compound series with regard to binding affinity to $A\beta(1-40)$ fibrils, lipophilicity (*e*log*D*), and iv pharmacokinetic properties.

First we set out to examine compounds having side chains fluorinated in positions where we predicted that it would be possible to conduct the ¹⁸F-labelling. This approach was warranted by

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2012.05.011

Figure 1. Examples of reported β-amyloid imaging agents.

Scheme 1. Reagents and conditions: (a) BBr₃, CH₂Cl₂, rt, 24%. (b) F-ethylamine, Et₃N, THF, 60 °C, 24 h, 26%.

Table 1 IC_{50} values, $e \log D^{15}$ and iv-PK properties	5 ¹⁶ for compounds	s 1, 3 and 9–13		
	X		0	R1

	R1 + N 9-13	R1 9 6-OH 10 6-OMe 11 6-OH 12 6-OH 13 6-OH	R2 NHCH2CH2F NHCH2CH2F NHCH2CH2CH2F NHCH2CH2F NHCH2CH2F NHCH2CH2CH2F	X O O O S S	
Compound	IC_{50}^{a} (nM)	e log D	<i>t</i> _{1/2} (min)		Dose in brain at 2 min (%)
1	19	2.8	9.8		1.3
3	22	1.8	6.8		1.0
9	158	1.2	<6.0		0.3
10	35	2.9	10.9		0.4
11	395	1.5	n.d.		n.d.
12	33	1.6	8.0		0.5
13	66	n.d.	n.d.		n.d.

n.d. denotes not determined.

Values are means of $n \ge 2$ determinations, absolute value of standard deviation $\le 10\%$.

the fact that *e*log*D* is not generally increased by the introduction of fluorine in alkyl chains contrary to the substitution of hydrogen by fluorine in aromatic rings. A low *e*log*D* value has been shown¹¹ to be essential in order to avoid high non-specific binding.

The 2-(pyridyl)-benzothiazole and 2-(pyridyl)-benzoxazole cores were synthesized as previously described¹¹⁻¹³ and the F-alkyl moiety was introduced in the last step via substitution with the corresponding amine, as shown for the example in Scheme 1. In vitro

binding affinities to human $A\beta(1-40)$ fibrils were determined by a competition radioligand binding assay using a fixed concentration of A β (1–40) fibrils (2 μ M) and [³H]-AZD2184 (3 nM).^{4,14} As previously discussed,¹¹ keeping the lipophilicity low (as measured by $e \log D^{15}$), and the wash-out rate of non-specific in vivo binding in the same range as for PIB **1** (as measured by $t_{1/2}^{16}$ in wild type rats), should produce a low non-specific binding in brain tissue. Suitable properties for a candidate ¹⁸F-ligand would be high affinity for Download English Version:

https://daneshyari.com/en/article/10596612

Download Persian Version:

https://daneshyari.com/article/10596612

Daneshyari.com