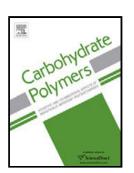
Accepted Manuscript

Title: Adsorption of lignocelluloses of pre-hydrolysis liquor on calcium carbonate to induce functional filler

Authors: Pedram Fatehi, Fadia C. Hamdan, Yonghao Ni


PII: S0144-8617(13)00127-6

DOI: doi:10.1016/j.carbpol.2013.01.081

Reference: CARP 7425

To appear in:

Received date: 28-10-2012 Revised date: 21-12-2012 Accepted date: 13-1-2013

Please cite this article as: Fatehi, P., Hamdan, F. C., & Ni, Y., Adsorption of lignocelluloses of pre-hydrolysis liquor on calcium carbonate to induce functional filler, *Carbohydrate Polymers* (2010), doi:10.1016/j.carbpol.2013.01.081

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Adsorption of lignocelluloses of pre-hydrolysis liquor on calcium carbonate to induce
2	functional filler
3	
4	Pedram Fatehi ^{1*} , Fadia C. Hamdan ² , Yonghao Ni ²
5	
6	¹ Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada,
7	P7B 5E1
8	² Department of Chemical Engineering and Limerick Pulp and Paper Centre, University of New
9	Brunswick, Fredericton, New Brunswick, Canada E3B 5A3.
10	*Corresponding author: E-mail: pfatehi@lakeheadu.ca; Tel: 807-343-8697; Fax: 807-346-7943
11	
12	Abstract
13	In this work, we aimed at adsorbing the oligo-sugars of prehydrolysis liquor on precipitated
14	calcium carbonate (PCC) to produce modified PCC. The results showed that the adsorptions of
15	oligo-sugars, lignin and furfural were greater on porous PCC (PCC2) than on nano-sized PCC
16	(PCC1) due to the larger surface area of PCC2. The adsorption reached its maximum in 5 h on
17	PCC1, but it gradually increased on PCC2 due to the diffusion of oligo-sugars and lignin into the
18	pores of PCC2. Also, the experimental isotherm and kinetic results were well fitted into
19	Langmuir and pseudo-second order models, respectively. The adsorption was greater at a lower
20	temperature (i.e. 40 °C) and pH (i.e. 7). Alternatively, cationic poly acrylamide (CPAM) was
21	added to the PHL/PCC system, which led to more promising results (than that to PHL/PCC
22	system) with the maximum lignocelluloses adsorption of 0.36 g/g on PCC2, among which 0.22
23	g/g was oligo-sugars.
24	
25	Keywords: PCC, PHL, Hemicelluloses, Adsorption, Filler, Biorefinery
26	
27	
28	
29	1. Introduction
30	Today, kraft technology is widely used for producing dissolving pulp. In this process, wood
31	chips are treated with steam in a pre-hydrolysis stage, which removes a part of hemicelluloses

Download English Version:

https://daneshyari.com/en/article/10601623

Download Persian Version:

https://daneshyari.com/article/10601623

<u>Daneshyari.com</u>