ELSEVIER

Contents lists available at ScienceDirect

European Polymer Journal

journal homepage: www.elsevier.com/locate/europolj

Polyphosphazenes combining dioxybiphenyl and butyl-amino substituents, a series with unusually high TGA residues and glass transition temperatures with negative deviation from additivity

Gabino A. Carriedo ^{a,*}, M.L. Valenzuela ^b

ARTICLE INFO

Article history:
Received 24 June 2010
Received in revised form 23 November 2010
Accepted 28 November 2010
Available online 9 December 2010

Keywords:
Phosphazenes
Glass transition
Aminophosphazenes
LOI (limiting oxygen index)

ABSTRACT

The new copolymeric series $\{[NP(O_2C_{12}H_8)]_{1-x}[NP(NHBu^n)_2]_x\}_n (O_2C_{12}H_8=2,2'-\text{dioxy-1,1'-biphenyl})$ with x = 0.1(1a), 0.31(1b), 0.43(1c), 0.63(1d) were prepared by the alkali carbonate-assisted sequential macromolecular substitution from $[NPCl_2]_n$. The thermal gravimetric analysis (TGA) revealed that although the stability decreased with x, the final residues (ca. 50% at 800 °C under N_2 ; 30% at 900 °C under air; and 15% at 1100 °C under oxygen) were unusually high. The variation of the glass transition temperatures with x showed negative deviation from the additive values (Fox equation), probably due to the losing of hydrogen bonding contribution as x is decreased.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Polyphosphazenes are inorganic macromolecules that can be synthesized by different routes allowing a remarkable variety of chemical composition and structures [1,2]. Among the two-substituent phosphazenes $[NPA_{1-x}B_x]_n$ the un-crosslinked copolymers $\{[NP(O_2C_{12}H_8)]_{1-x}[NPB_2]_x\}_n$ $(O_2C_{12}H_8=2,2'-dioxy-biphenyl)$ having λ^5 -phosphorusheterocycles P(O₂C₁₂H₈) in the repeating units (polyspirophosphazenes) (Chart 1) form a simpler system because of the bidentate nature of one of the substituents. Many examples of polyspirophosphazenes have been described [3]. They exhibit very high glass transition temperatures, particularly when x is below 0.2 (the homopolymer, with x = 0, has a $T_g = 161$ °C). This is probably due to strong π -interactions between chains, as pointed out by Ainscough et al. on the basis on crystallographic studies with related cyclic models [4].

Polyspirophosphazenes are easily obtained by refluxing a THF solution of $[NPCl_2]_n$ with 2,2'-dihydroxy-1, 1'-biphenyl (HO-C₆H₄-C₆H₄-OH) in the presence of K₂CO₃ to give the partially substituted intermediates $\{[NP(O_2C_{12}H_8)]_{1-x}[NPCl_2]_x\}_n$, which could be subsequently reacted with functionalized phenols or biphenols in the presence of Cs₂CO₃ (alkali carbonate-assisted sequential macromolecular substitution). However, only a few derivatives have been prepared having aminophosphazene groups [5,6]. In this work we describe the synthesis of the new series of copolymers $\{[NP(O_2C_{12}H_8)]_{1-x}[NP(NH Bu^{n}_{2}|_{x}$ (1) having butylamine-phosphazene units (B = NHBuⁿ in Chart 1). The thermal behaviour (by TGA under different conditions) revealed high pyrolytic residues that can be compared with those left by different chlorine containing polyphosphazenes making them potential selfextinguishing [7]. The results have also provided a good example of negative deviation of the glass transition temperatures from the additive rule, that could be explained by the increasing difficulty in the formation of H-bonding interactions as x decreases.

^a Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Oviedo 33071, Spain

^b Universidad Andres Bello, Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Santiago 8370146, Chile

^{*} Corresponding author. Fax: +34 985 103446. E-mail address: gac@uniovi.es (G.A. Carriedo).

Chart 1. Structure of copolymers $\{[NP(O_2C_{12}H_8)]_{1-x}[NPB_2]_x\}_n$.

2. Experimental section

All reactions were carried out under a dry N_2 atmosphere. K_2CO_3 and Cs_2CO_3 were dried at $140\,^{\circ}C$ prior to use. The THF was treated with KOH and distilled twice from Na in the presence of benzophenone. The 2-2′-dihydroxy-biphenyl (Aldrich) and the n-butylamine (Aldrich) were used as purchased. The intermediate polymers $\{[NP(O_2C_{12}H_8)]_{1-x}[NPCl_2]_x\}_n$ (x <0.5) [8] or its THF solutions from $[NPCl_2]_x$ [9], were prepared following the methods already described.

The IR spectra were recorded with a Perkin-Elmer FT Paragon 1000 spectrometer. NMR spectra were recorded on Bruker DLX-300 and Avance 300 and 600 Mz instruments, using CDCl₃ as solvent unless otherwise stated. ¹H and ${}^{13}C\{{}^{1}H\}$ NMR are given in δ relative to TMS. ${}^{31}P\{{}^{1}H\}$ NMR are given in δ relative to external 85% aqueous H₃PO₄. C, H, N, analyses were obtained with Elemental Vario Macro. Chlorine, analyses were performed by Galbraith Laboratories. GPC were measured with a Perkin Elmer equipment with a Model LC 250 pump, a Model LC 290 UV, and a Model LC 30 refractive index detector. The samples were eluted with a 0.1% by weight solution of tetra-nbutylammonium bromide in THF through Perkin Elmer PLGel (Guard, 10⁵, 10⁴ and 10³ Å) at 30 °C. Approximate molecular weight calibration were obtained using narrow molecular weight distribution polystyrene standards. T_g values were measured with a Mettler DSC 300 differential scanning calorimeter equipped with a TA 1100 computer. Thermal gravimetric analysis were performed on a Mettler TA 4000 instrument. The polymer samples were heated at a rate of 10 °C/min from ambient temperature to 800 °C under constant flow of nitrogen or to 900-1100 °C under air or under oxygen.

X-ray diffractograms were measured with PANalytical X'Pert Pro, using $K\alpha_1$ Cu radiation (1.5406 Å) at 45 kV–40 mA, with a X'Celerator detector with 2.122°. The scans were $\theta/2\theta$ from 2 to 560° 2θ at 0.033° intervals at 300 s per interval.

2.1. Synthesis of $\{[NP(O_2C_{12}H_8)]_{1-x}[NP(NHBu^n)_2]_x\}_n$ (1)

The following procedure for the preparation of **1a** (x = 0.10) starting from solid $\{[NP(O_2C_{12}H_8)]_{1-x}[NPCl_2]_x\}_n$ (x < 0.5) is representative of those corresponding to other derivatives after modifying the molar ratios.

A solution of $\{[NP(O_2C_{12}H_8)]_{0.9}[NPCl_2]_{0.1}\}_n$ (0.2 g, 0.94 mmol, 0.19 mmol Cl) in THF (50 mL) was mixed with solid Cs_2CO_3 (0.20 g, 0.6 mmol) and cooled to 0 °C. Then NH_2Bu^n (0.07 mL, 0.096 g, 1.3 mmol) was added and the mixture was allowed to reach room temperature, stirred for 54 h,

filtered and concentrated to a viscous liquid that was precipitated into water (100 mL). The solid was re-dissolved in THF (100 mL) and re-precipitated in the same way from THF/IPA and THF/Hexane, to give **1a** as a white solid (0.17 g, 80.3%).

The following procedure for the preparation of **1b** (x = 0.31) starting from [NPCl₂]_n is representative of that corresponding to the other derivatives after modifying the molar ratios.

A solution of $[NPCl_2]_n$ (2 g, 17.3 mmol) in THF (150 mL) was mixed with solid $(HO)_2C_{12}H_8$ (1.93 g, 10.4 mmol) and K_2CO_3 (4.3 g, 31 mmol) and stirred under reflux for 16 h. Then NHBuⁿ (5.6 mL, 4.14 g, 55.8 mmol) and Cs_2CO_3 (13.5 g, 42 mmol) were added and the mixture was stirred for 72 h at room temperature, filtered and concentrated to a viscous liquid that was precipitated into water (100 mL) (decanted overnight). The solid was washed with water (10 × 100 mL) dried at 40 °C overnight, re-dissolved in THF (600 mL) and re-precipitated in IPA to give **1b** as a white solid (3 g, 80%), that was dried at 70 °C.

Analyses: (%) C, H, N, found (calcd), and % residual Cl. (**1a**): 58.1(61.9), 3.90(4.09), 7.60(7.46), 0.14%Cl; (**1b**): 57.1(59.4), 5.5(5.4), 9.4(10.4), 0.54%Cl; (**1c**): 55.6(58.0), 5.27(6.19), 12.0(12.2), 0.35%Cl; (**1d**): 53.9(55.5), 6.40(7.59), 15.6(15.4), 0.18%Cl.

MW(PDI) by GPC: (1a): 570,000(5.9); (1b): 580,000(5.2); (1c): 700,000(4.7); (1d): 552,000(4.4).

IR (KBr) cm $^{-1}$ (KBr pellets): 3390w.br. (v-NH-free), 3350–3300w.br. (H-bonding-v-NH), 3066w, 3031vw (v-CH-arom.), 2955, 2929 and 2869 (v-CH-Bu n), 1604w, 1583vw, 1501m, 1477s (v-C=C-arom.), 1438m, 1414m, 1374s.br. (not assigned), 1272sh. (v-C-OP), 1241vs 1193vs, br. (v-PN), 1118m, 1096s (v-P-OC), 1037w, 1012vw (nor assigned) 931–900vs, br. (δ -POC), 782s, 750s, 717m (out of plane CH deformations), 610s, 591m, 535s.br. (not assigned). The (v-PN) and (δ -POC) frequencies and the intensity of the absorption at 1414 cm $^{-1}$ changed with x. The H-bonding-v-NH band is more intense and has lower frequency as x increases.

³¹P{H}NMR (CDCl₃) complex multiplet with δ max: (**1a**): -2, -5, -6; (**1b**): -0.4, -4.2; (**1c**): -1.4, -4.3; (**1d**): 2.5, 0.8, -0.5, -4.3.

 1 HNMR (CDCl₃) δ: 6.7–7.2m, br. ($O_{2}C_{12}H_{8}$), 2.43m, 0.95m, 0.61m (N-CH₂CH₂CH₂CH₃). The HN signal was overlapped with the 2.4 multiplet.

¹³C{H}NMR (THF): δ = 149br, 130, 129.7, 129.5, 128.9, 125.0, 123.2 ($O_2C_{12}H_8$), 40.5, 20.2, 26.7, 33.6, 40.5 (N-CH₂CH₂CH₂CH₃).

TGA residues % left at 800 °C under N₂, 900 °C under air, 1100 °C under oxygen: (**1a**): 49, 22, 16; (**1b**): 49, 27, 15; (**1c**): 49, 26, 13; (**1d**): 46, 26, 13.

The T_g 's were measured by DSC from the well defined heat capacity steps. DSC, T_g °C: (**1a**): 129; (**1b**): 76; (**1c**): 50; (**1d**): 2.

3. Results and discussion

Refluxing $[NPCl_2]_n$ in THF with 2,2'-dihydroxy-1,1'-biphenyl $(HO-C_6H_4-C_6H_4-OH)$ in the presence of K_2CO_3 (Scheme 1) gave the partially substituted intermediates

Download English Version:

https://daneshyari.com/en/article/10609639

Download Persian Version:

https://daneshyari.com/article/10609639

<u>Daneshyari.com</u>