

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/bcdf

An alternative strategy for structural glucanomics using β -gluco-oligosaccharides from the brown algae Ecklonia stolonifera as models

Wataru Sumiyoshi^{a,1}, Nobumitsu Miyanishi^{a,d,1}, Shin-ichi Nakakita^{b,*,2}, Shoko Tsutsui^c, Keita Yamada^a, Yukari Nakakita^b, Shin Yoshioka^c, Masakatsu Asao^c, Jun Hirabayashi^{a,b}

^aDivision of Glyco-Bioindustry, Life Science Research Center, Institute of Research Promotion, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan

^bDivision of Functional Glycomics, Life Science Research Center, Institute of Research Promotion, Kagawa University,

1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan

^cTakara Shokuhin Co., 2226-15 Noma, Shodoshima-cho, Shozu-gun, Kagawa 761-4493, Japan

^dFaculty of Life Science, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan

ARTICLE INFO

Article history: Received 4 June 2014 Received in revised form 18 February 2015 Accepted 20 March 2015

Keywords: Beta glucan Pyridylamination Brown algae Acid hydrolysis Beta1–6 brunch HPLC separation

ABSTRACT

Studies of β -glucans are often hampered by their structural diversity and complexity, which is problematic because interest in their effects on animal cells has increased in recent years. Herein, we present a comprehensive strategy for structural characterization of branched β -glucans, and as a proof-of-concept study, characterized laminarin and acidsoluble β -gluco-oligosaccharides (<4000 Da, void volume elute fraction of gel filtration on Bio-gel P-2) from the brown algae, Ecklonia stolonifera. The strategy involves quantitative fluorescence detection-high performance liquid chromatography that enables the characterization of di- and oligosaccharides after acid hydrolysis of the glucan. We found that laminarin is composed of β 1–3 (72% in mol) and β 1–6 (28%) anomeric bonds, whereas the E. stolonifera glucan is composed of β 1–3 (57%) and β 1–6 (43%) anomeric bonds. This composition is distinct from that of other brown algae β -glucans, for which the β 1–6 bond content is much smaller. We also performed a detailed structural analysis of the 11 major β -gluco-oligosaccharides prepared by mild acid hydrolysis and β 1–3-specific laminarinase digestion. All 11 oligosaccharides contained branches joined to the backbone by β 1-6 bonds. Five of the oligosaccharides had extended branches; in this regard, the E. stolonifera glucan is unlike other characterized β -glucans. Our strategy should enable structural characterizations of β -branched glucans, for which no practical approach has been available until now.

© 2015 Elsevier Ltd. All rights reserved.

*Corresponding author. Fax: +81 87 891 2410.

¹These authors contributed equally.

E-mail address: glycofun@kms.ac.jp (S.-i. Nakakita).

²To whom correspondence should be addressed.

http://dx.doi.org/10.1016/j.bcdf.2015.03.002 2212-6198/© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Glucans are a large group of homopolysaccharides, distributed widely in nature. β -glucans (starch and glycogen) are the most important energy storage substances for both animals and plants. Conversely, β -glucans cannot be universally used as an energy source because only herbivores can digest them. However, β -glucans appear to be recognized as non-self molecules by the innate and adaptive immune systems (Brown & Gordon, 2005) and may, therefore, be effective in the treatment of cancer, including human leukemia (Miyanishi, Iwamoto, Watanabe & Oda, 2003), microbial infects, hypercholesterolemia, and diabetes (Chen & Seviour, 2007; Chan, Chan, & Sze, 2009; Chen & Raymond, 2008). β -glucans, therefore, have the potential to serve as medicinal supplements.

With the exception of cellulose, a linear β 1–4 glucan, β glucans from yeast and fungal cell walls, and from mushroom and brown algae fruiting bodies generally have a β1-3 glucosidic backbone and often contain β 1,6 backbone-linked branches (Bull & Chesters, 1966; Chen & Seviour, 2007; Dong, Yao, Yang, & Fan, 2002; Lowman, Ferguson, & Williams, 2003; Manners, Masson, & Patterson, 1973; Manners, Masson, Patterson, Björndal, & Lindberg 1973; Mursito, Jenie, Mubarika, & Kardono, 2010; Schmid et al., 2001). In fact, the major component of the yeast Saccharomyces cerevisiae cell wall contains β 1–3 bonds in the backbone and a small amount (\sim 3%) of β 1–6 backbone-linked branches. Conversely, the β glucan from the mushroom Agaricus blazei contains a backbone with β -1–6 anomeric bonds and one β 1–3-linked branch for every three backbone residues. Although many studies have reported partial structures for yeast, fungal, and mushroom β -glucans, few have examined β -glucan (laminarin) from brown algae; e.g., Laminaria digitata and L. hyperborean (Bull & Chesters, 1966, Hrmova & Fincher, 1993) for which the β1–3-linked backbone dominates.

Ecklonia stolonifera, also a brown algae, inhabits the coast of the Japan Sea from Aomori to Kyusyu, Japan. Although the *E*. stolonifera phycobiont contains β -glucans and β -glucooligosaccharides similar in structure to those in *L*. digitata and *L*. hyperborean (Odagiri & Kato, personal communication, 2009), their detailed structure(s) have not been elucidated.

Nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS); (Dong et al., 2002; Ha et al., 2002; Kruppa et al., 2009; Kawai, Igarashi, Yoshida, Kitaoka, & Samejima, 2006; Lowman et al., 2003; Schmid et al., 2001;) have been employed to characterize the E. stolonifera β -glucans and β -gluco-oligosaccharides. However, most of these β -glucans have mainly linear structures with relatively short β 1–6 branches. Also the use of NMR and GC-MS are laborious, time-consuming, and require a large amount of purified material, which is often difficult to obtain. These difficulties considerably hamper β -glucan and β -glucooligosaccharide characterization, which is essential if their structure-function relationships are to be elucidated. Another major difficulty is how to characterize branches (e.g., the β 1– $3/\beta 1-6$ content, and backbone and branch lengths,), which have been assumed to determine the biological activities of β-glucans and β-gluco-oligosaccharides. However, no

systematic, highly sensitive procedure had been developed prior to this report, which could be applied to many different types of glucans. Fortunately, all α - and β -anomerically linked disaccharides in glucans are commercially available. Moreover, highly sensitive fluorescent-labeling methods that use monoamine-coupling chemistry (e.g., pyridylamination), have been developed to tag saccharides at their reducing end, thereby providing a method to quantify the glucan content from a biological source and its anomeric bonds when used in conjunction, with fluorescence-detection high-performance liquid chromatography (FD-HPLC).

In this study, we describe a comprehensive procedure to characterize β -gluco-oligosaccharides (<10-mer) that involves: (1) quantitative analysis of the disaccharide components obtained after strong aicd hydrolysis of pyridylaminated purified β -gluco-oligosaccharides by FD-HPLC, (2) structural sequencing of the pyridylaminated β-glucooligosaccharides by mild acid hydrolysis, and (3) characterization of the backbone chain length using 1-6-bond-specific acetolysis and laminaridase digestion (Scheme 1). As proof of concept, we extracted β -gluco-oligosaccharides from E. stolonifera that contain β 1–3 and 1–6 bonds (Odagiri & Kato, personal communication, 2009). The acid-soluble extract contained mainly β -gluco-oligosaccharides that were then characterized using the aforementioned strategy. We found that these oligosaccharides contain a relatively large number of β 1–6 bonds (43 mol%), and, as such, represents a new type of brown algae β -glucan. The developed procedure provides a comprehensive strategy for structural characterization of branched β -glucans using a relatively few amounts of samples compared with NMR and GC-MS.

2. Materials and methods

2.1. Materials

Nigerose (Glc α 1-3Glc) was purchased from Hayashibara Biochemical Laboratories, Inc. (Okayama, Japan). D-(+)-Maltose monohydrate (Glc α 1-4Glc), D-(+)-cellobiose (Glc β 1-4Glc), isomaltose (Glc α 1-6Glc), and gentiobiose (Glc β 1-6Glc) were purchased from Tokyo Kasei Kogyo Co. Ltd. (Tokyo, Japan). Sophorose (Glc β 1-2Glc) and kojibiose (Glc α 1-2Glc) were from SERVA Electrophoresis GmbH (Heidelberg, Germany) and Wako Pure Chemical Industries, Ltd. (Osaka, Japan), respectively.

The brown algae *E.* stolonifera was obtained from Oma town (Aomori, Japan). An Inertsil ODS-3V column ($4.6 \times 250 \text{ mm}^2$) and an Inertsil NH2 column ($4.6 \times 150 \text{ mm}^2$) were purchased from GL Sciences (Tokyo, Japan). 2-Aminopyridine was purchased from Nacalai Tesque (Kyoto, Japan) and purified from heptane. A Cosmosil 5C18-P column ($2 \times 250 \text{ mm}^2$) and a Shodex Asahipak NH2P-50 2D column ($2 \times 150 \text{ mm}^2$) were from Nacalai Tesque (Kyoto, Japan) and Showa Denko (Tokyo), respectively. Green coffee bean α glucosidase and laminarinase from Trichoderma sp. were purchased from Sigma-Aldrich (St. Louis, MO), respectively. Laminaribiose (Glc β 1-3Glc), laminaritriose (Glc β 1-3Glc β 1-3Glc), laminaritetraose ([Glc β 1-3Glc]₂), laminaripentaose (Glc β 1-3Glc]₂), and laminarihexaose ([Glc β 1-3Glc]₃) Download English Version:

https://daneshyari.com/en/article/10610435

Download Persian Version:

https://daneshyari.com/article/10610435

Daneshyari.com