Accepted Manuscript

Bio-inspired graphene-based coatings on Mg alloy surfaces and their integrations of anti-corrosive/wearable performances

J.H. Chu, L.B. Tong, J.B. Zhang, S. Kamado, Z.H. Jiang, H.J. Zhang, G.X. Sun

PII: S0008-6223(18)30863-7

DOI: 10.1016/j.carbon.2018.09.047

Reference: CARBON 13475

To appear in: Carbon


Received Date: 22 June 2018

Revised Date: 27 August 2018

Accepted Date: 14 September 2018

Please cite this article as: J.H. Chu, L.B. Tong, J.B. Zhang, S. Kamado, Z.H. Jiang, H.J. Zhang, G.X. Sun, Bio-inspired graphene-based coatings on Mg alloy surfaces and their integrations of anti-corrosive or wearable performances, *Carbon* (2018), doi: 10.1016/j.carbon.2018.09.047

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Bio-inspired graphene-based coatings on Mg alloy surfaces and their integrations of anti-corrosive/wearable performances

 $J.H.\ Chu\ ^{a,\ b},\ L.B.\ Tong\ ^{b,\ *},\ J.B.\ Zhang\ ^{a,\ b},\ S.\ Kamado\ ^{c},\ Z.H.\ Jiang\ ^{a,\ *},\ H.J.\ Zhang\ ^{b},\ G.X.\ Sun\ ^{a}$

^a Key Lab of Automobile Materials, College of Materials Science and Engineering, Jilin University, Nanling

Campus, Changchun 130025, China

^b State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese

Academy of Sciences, Changchun 130022, China

^c Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan

Abstract

Mg and its alloys generally exhibit the poor corrosion and wear resistances, which greatly limits their industrial applications. Inspired from an ordered layered structure within natural nacre, the homogeneous reduced graphene oxide/poly (vinyl alcohol) (RGO/PVA) coating is successfully fabricated on Mg alloy surface in the current study, through a facile spin-assisted layer-by-layer assembly (SA-LBL) technology. The hybrid hydrogen/covalent bond networks form between PVA chains and RGO sheets, resulting in a compact lamellar "bricks-and-mortar" structure. The microstructure of hybrid coating is strongly influenced by the cross-linking effect of PVA molecule, whose suitable content is beneficial to generating the densely stacked lamellar coating with excellent binding strength and reduced intrinsic defects, which can significantly improve its corrosion resistance. And the water molecules can hardly diffuse into

^{*} Corresponding author. E-mail: lbtong@ciac.ac.cn (L.B. Tong), jzh@jlu.edu.cn (Z.H. Jiang)

Download English Version:

https://daneshyari.com/en/article/10611974

Download Persian Version:

https://daneshyari.com/article/10611974

<u>Daneshyari.com</u>